Skip to content
2000
image of Synthesis of Gold Nanoparticles Using Cucurbitacin E-Glycoside and Methyl Gallate Isolated from Citrullus colocynthis L. Fruit and Evaluation of their Antibacterial and Antibiofilm Activities

Abstract

Introduction

Metal nanoparticles have received much attention due to their unique physical dynamics, chemical reactivity, and promising biological applications. Green synthesis using natural compounds is an alternative to traditional chemical methods for the synthesis of nanoparticles.

Materials and Methods

Herein, two secondary metabolites were isolated from different fractions of methanolic extract of (bitter apple) Schard. and identified as cucurbitacin E-glycoside () and methyl gallate (). Both compounds were used in the green nanoformulation of gold nanoparticles. Mass spectrometry and NMR spectroscopy were used for structure elucidation of compound and compound . UV-vis spectroscopy, FTIR, and AFM were performed to confirm the formation of AuNPs.

Result and discussions

The spectra of UV-Vis showed a characteristic peak at 519 nm and 548 nm for compounds 1 and 2, respectively. AuNPs ranged mostly between 1 and 50 nm measured using AFM. The FTIR analysis confirmed the presence of phytochemicals on the surface of AuNPs. The synthesized AuNPs showed good antibacterial activity against , , and .

Conclusion

The synthesized AuNPs demonstrated good antibiofilm activity against . Thus, the green synthesized AuNPs can combat the pathogenicity of several human pathogens.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385314421241009075737
2024-12-19
2025-01-19
Loading full text...

Full text loading...

References

  1. Ndikau M. Noah N.M. Andala D.M. Masika E. Green synthesis and characterization of silver nanoparticles using Citrullus lanatus fruit rind extract. Int. J. Anal. Chem. 2017 2017 1 9 10.1155/2017/8108504 28316627
    [Google Scholar]
  2. Adhikari A. Chhetri K. Acharya D. Pant B. Adhikari A. Green synthesis of iron oxide nanoparticles using Psidium guajava L. leaves extract for degradation of organic dyes and anti-microbial applications. Catalysts 2022 12 10 1188 10.3390/catal12101188
    [Google Scholar]
  3. Falahati M. Attar F. Sharifi M. Saboury A.A. Salihi A. Aziz F.M. Kostova I. Burda C. Priecel P. Lopez-Sanchez J.A. Laurent S. Hooshmand N. El-Sayed M.A. Gold nanomaterials as key suppliers in biological and chemical sensing, catalysis, and medicine. Biochim. Biophys. Acta, Gen. Subj. 2020 1864 1 129435 10.1016/j.bbagen.2019.129435 31526869
    [Google Scholar]
  4. Shnoudeh A.J. Hamad I. Abdo RW. Synthesis, characterization, and applications of metal nanoparticles. Biomaterials and Bionanotechnology Academic Press 2019 527 612 10.1016/B978‑0‑12‑814427‑5.00015‑9
    [Google Scholar]
  5. Zargar M. Hamid A.A. Bakar F.A. Shamsudin M.N. Shameli K. Jahanshiri F. Farahani F. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 2011 16 8 6667 6676 10.3390/molecules16086667 25134770
    [Google Scholar]
  6. Kulkarni N. Muddapur U. Biosynthesis of metal nanoparticles: A review. J. Nanotechnol. 2014 2014 1 1 8 10.1155/2014/510246
    [Google Scholar]
  7. Marchiol L. Synthesis of metal nanoparticles in living plants. Ital. J. Agron. 2012 7 3 37 10.4081/ija.2012.e37
    [Google Scholar]
  8. Willets K.A. Duyne R.P.V. Localized surface plasmon resonance spectroscopy and sensing. Ann Rev Phys Chem 2007 58 267 297 10.1146/annurev.physchem.58.032806.104607
    [Google Scholar]
  9. Ealia S.A.M. Saravanakumar M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 2017 263 3 032019 10.1088/1757‑899X/263/3/032019
    [Google Scholar]
  10. Amina S.J. Guo B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomedicine 2020 15 9823 9857 10.2147/IJN.S279094 33324054
    [Google Scholar]
  11. Wu Y. Ali M.R.K. Chen K. Fang N. El-Sayed M.A. Gold nanoparticles in biological optical imaging. Nano Today 2019 24 120 140 10.1016/j.nantod.2018.12.006
    [Google Scholar]
  12. Paciotti G.F. Myer L. Weinreich D. Goia D. Pavel N. McLaughlin R.E. Tamarkin L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004 11 3 169 183 10.1080/10717540490433895 15204636
    [Google Scholar]
  13. Das M. Shim K.H. An S.S.A. Yi D.K. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 2011 3 4 193 205 10.1007/s13530‑011‑0109‑y
    [Google Scholar]
  14. Ashraf R. Amna T. Sheikh F.A. Unique properties of the gold nanoparticles: Synthesis, functionalization and applications. Application of Nanotechnology in Biomedical Sciences. Sheikh F.A. Singapore Springer 2020 75 98 10.1007/978‑981‑15‑5622‑7_5
    [Google Scholar]
  15. Yeh Y.C. Creran B. Rotello V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012 4 6 1871 1880 10.1039/C1NR11188D 22076024
    [Google Scholar]
  16. Giljohann D.A. Seferos D.S. Daniel W.L. Massich M.D. Patel P.C. Mirkin C.A. Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 2010 49 19 3280 3294 10.1002/anie.200904359 20401880
    [Google Scholar]
  17. Hussain A.I. Rathore H.A. Sattar M.Z.A. Chatha S.A.S. Sarker S.D. Gilani A.H. Citrullus colocynthis (L.) Schrad (bitter apple fruit): A review of its phytochemistry, pharmacology, traditional uses and nutritional potential. J. Ethnopharmacol. 2014 155 1 54 66 10.1016/j.jep.2014.06.011 24936768
    [Google Scholar]
  18. Khan M. Evaluation of chemical analysis profile of Citrullus colocynthis growing in Southern areas of Khyber Pukhtunkhwa Pakistan. World Appl. Sci. J. 2010 10 402 405
    [Google Scholar]
  19. Al-Snafi D. A. E. Chemical constituents and pharmacological effects of Citrullus colocynthis - A review. J Nat Prod Plant Resour 2011 1 3 1 7
    [Google Scholar]
  20. Al-Ardi M.H. The uses of gold nanoparticles and Citrullus colocynthis L. nanoparticles against Giardia lamblia in vivo . Clin. Epidemiol. Glob. Health 2020 8 4 1282 1286 10.1016/j.cegh.2020.04.028
    [Google Scholar]
  21. Sharma A. Dahiya R. Nag T.N. Antibacterial activity of Citrullus colocynthis and Tribulus terrestris against some pathogenic bacteria. Asian J. Microbiol. Biotechnol. Environ. Sci. 2010 12 633 637
    [Google Scholar]
  22. Marzouk B. Marzouk Z. Décor R. Edziri H. Haloui E. Fenina N. Aouni M. Antibacterial and anticandidal screening of Tunisian Citrullus colocynthis Schrad. from Medenine. J. Ethnopharmacol. 2009 125 2 344 349 10.1016/j.jep.2009.04.025 19397972
    [Google Scholar]
  23. Marzouk B. Marzouk Z. Haloui E. Fenina N. Bouraoui A. Aouni M. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J. Ethnopharmacol. 2010 128 1 15 19 10.1016/j.jep.2009.11.027 19962436
    [Google Scholar]
  24. Kumar S. Kumar D. Jusha M. Saroha K. Singh N. Vashishta B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008 58 2 215 220 10.2478/v10007‑008‑0008‑1 18515231
    [Google Scholar]
  25. Marzouk Z. Marzouk B. Mahjoub MA. Screening of the antioxidant and the free radical scavenging potential of Tunisian Citrullus colocynthis Schrad. from Mednine. J. Agric. Food Environ. 2010 8 2 261 265
    [Google Scholar]
  26. Marzouk B. Marzouk Z. Haloui E. Anti-inflammatory evaluation of immature fruit and seed aqueous extracts from several populations of Tunisian Citrullus colocynthis Schrad. Afr. J. Biotechnol. 2011 10 20 4217 4225 10.5897/AJB10.2181.
    [Google Scholar]
  27. Wasfi I.A. Bashir A.K. Abdalla A.A. Banna N.R. Tanira M.O.M. Antiinflammatory activity of some medicinal plants of the United Arab Emirates. Int J Pharmacog 1995 33 2 124 128 10.3109/13880209509055211
    [Google Scholar]
  28. Abdel-Hassan I.A. Abdel-Barry J.A. Tariq Mohammeda S. The hypoglycaemic and antihyperglycaemic effect of Citrullus colocynthis fruit aqueous extract in normal and alloxan diabetic rabbits. J. Ethnopharmacol. 2000 71 1-2 325 330 10.1016/S0378‑8741(99)00215‑9 10904181
    [Google Scholar]
  29. Rajangam J. Shivakumar A. Anitha T. Joshi V. Palei N.N. Antidiabetic effect of petroleum ether extract of Citrullus colocynthis fruits against streptozotocin-induced hyperglycemic rats. Romjbiol-Plant Biol 2009 54 127 134
    [Google Scholar]
  30. Mohammad D. In vivo , hypolipidemic and antioxidant effects of Citrullus colocynthis pulp extract in alloxan-induced diabetic rats. Afr. J. Biotechnol. 2013 10 48 9898 9903 10.5897/AJB11.268
    [Google Scholar]
  31. Tannin-Spitz T. Bergman M. Grossman S. Cucurbitacin glucosides: Antioxidant and free-radical scavenging activities. Biochem. Biophys. Res. Commun. 2007 364 1 181 186 10.1016/j.bbrc.2007.09.075 17942079
    [Google Scholar]
  32. Liu T. Zhang M. Zhang H. Sun C. Yang X. Deng Y. Ji W. Combined antitumor activity of cucurbitacin B and docetaxel in laryngeal cancer. Eur. J. Pharmacol. 2008 587 1-3 78 84 10.1016/j.ejphar.2008.03.032 18442812
    [Google Scholar]
  33. Zhang Z.R. Gao M.X. Yang K. Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp. Ther. Med. 2017 14 1 805 812 10.3892/etm.2017.4547 28673003
    [Google Scholar]
  34. Yoshikawa M. Morikawa T. Kobayashi H. Nakamura A. Matsuhira K. Nakamura S. Matsuda H. Bioactive saponins and glycosides. XXVII. Structures of new cucurbitane-type triterpene glycosides and antiallergic constituents from Citrullus colocynthis . Chem. Pharm. Bull. (Tokyo) 2007 55 3 428 434 10.1248/cpb.55.428 17329885
    [Google Scholar]
  35. Mikhailova E.O. Gold nanoparticles: Biosynthesis and potential of biomedical application. J. Funct. Biomater. 2021 12 4 70 10.3390/jfb12040070 34940549
    [Google Scholar]
  36. Hussain A.I. Rathore H.A. Sattar M.Z.A. Chatha S.A.S. Ahmad F. Ahmad A. Johns E.J. Phenolic profile and antioxidant activity of various extracts from Citrullus colocynthis (L.) from the Pakistani flora. Ind. Crops Prod. 2013 45 416 422 10.1016/j.indcrop.2013.01.002
    [Google Scholar]
  37. Selvaraj G. Ramanathan Kaliamurthi S. Characterization of volatile compounds from bitter apple (Citrullus colocynthis ) using GC-MS. Int J Chem Anal Sci 2011 2 108 110
    [Google Scholar]
  38. Gurudeeban S. Satyavani K. Ramanathan T. Bitter apple (Citrullus colocynthis ): An overview of chemical composition and biomedical potentials. Asian J. Plant Sci. 2010 9 7 394 401 10.3923/ajps.2010.394.401.
    [Google Scholar]
  39. Delazar A. Gibbons S. Kosari AR. Flavonoid C-glycosides and cucurbitacin glycosides from Citrullus colocynthis . Daru, J. Fac. Pharm. 2006 14 109 114
    [Google Scholar]
  40. Sayed M. Balbaa S. Afifi M. Nitrogenous bases of the different organs of Citrullus colocynthis . Planta Med. 1973 24 7 260 265 10.1055/s‑0028‑1099495 4776283
    [Google Scholar]
  41. Najafi S. Sanadgol N. Nejad B. S. Beiragi M. A. Sanadgol E. Phytochemical screening and antibacterial activity of Citrullus colocynthis (Linn.) Schrad against Staphylococcus aureus . J Med Plants Res 2010 4 22 2321 2325 10.5897/JMPR10.192.
    [Google Scholar]
  42. Sebbagh N. Cruciani-Guglielmacci C. Ouali F. Berthault M.F. Rouch C. Sari D.C. Magnan C. Comparative effects of Citrullus colocynthis , sunflower and olive oil-enriched diet in streptozotocin-induced diabetes in rats. Diabetes Metab. 2009 35 3 178 184 10.1016/j.diabet.2008.10.005 19264524
    [Google Scholar]
  43. Patra J.K. Baek K.H. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. J. Nanomater. 2014 2014 1 417305 10.1155/2014/417305
    [Google Scholar]
  44. Su C. Huang K. Li H.H. Lu Y.G. Zheng D.L. Antibacterial properties of functionalized gold nanoparticles and their application in oral biology. J. Nanomater. 2020 2020 1 1 13 10.1155/2020/5616379
    [Google Scholar]
  45. Timoszyk A. Grochowalska R. Mechanism and antibacterial activity of gold nanoparticles (AuNPs) functionalized with natural compounds from plants. Pharmaceutics 2022 14 12 2599 10.3390/pharmaceutics14122599 36559093
    [Google Scholar]
  46. Aqawi M. Sionov R.V. Gallily R. Friedman M. Steinberg D. Anti-biofilm activity of cannabigerol against Streptococcus mutans. Microorganisms 2021 9 10 2031 10.3390/microorganisms9102031 34683353
    [Google Scholar]
  47. Mubeen B. Rasool M.G. Ullah I. Rasool R. Imam S.S. Alshehri S. Ghoneim M.M. Alzarea S.I. Nadeem M.S. Kazmi I. Phytochemicals mediated synthesis of AuNPs from Citrullus colocynthis and Their characterization. Molecules 2022 27 4 1300 10.3390/molecules27041300 35209086
    [Google Scholar]
  48. Benkovicova M. Vegso K. Siffalovic P. Jergel M. Luby S. Majkova E. Preparation of gold nanoparticles for plasmonic applications. Thin Solid Films 2013 543 138 141 10.1016/j.tsf.2013.01.048
    [Google Scholar]
  49. Ponsankar A. Sahayaraj K. Senthil-Nathan S. Vasantha-Srinivasan P. Karthi S. Thanigaivel A. Petchidurai G. Madasamy M. Hunter W.B. Toxicity and developmental effect of cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura Fab. and a non-target earthworm Eisenia fetida Savigny. Environ. Sci. Pollut. Res. Int. 2020 27 19 23390 23401 10.1007/s11356‑019‑04438‑1 30734910
    [Google Scholar]
  50. Jayaseelan C. Ramkumar R. Rahuman A.A. Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 2013 45 423 429 10.1016/j.indcrop.2012.12.019
    [Google Scholar]
  51. Katas H. Lim C.S. Nor Azlan A.Y.H. Buang F. Mh Busra M.F. Antibacterial activity of biosynthesized gold nanoparticles using biomolecules from Lignosus rhinocerotis and chitosan. Saudi Pharm. J. 2019 27 2 283 292 10.1016/j.jsps.2018.11.010 30766441
    [Google Scholar]
  52. Rao V. Poonia A. Citrullus colocynthis (bitter apple): Bioactive compounds, nutritional profile, nutraceutical properties and potential food applications: a review. Food Prod Process Nutr 2023 5 1 4 10.1186/s43014‑022‑00118‑9
    [Google Scholar]
  53. Flores-Maldonado O. Dávila-Aviña J. González G.M. Becerril-García M.A. Ríos-López A.L. Antibacterial activity of gallic acid and methyl gallate against emerging non-fermenting bacilli. Folia Microbiol. (Praha) 2024 Jun 10.1007/s12223‑024‑01182‑z 38904883
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385314421241009075737
Loading
/content/journals/pnt/10.2174/0122117385314421241009075737
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test