Skip to content
2000
image of A Review on Silver Nanoparticles: Synthesis Approaches, Properties, Characterization and Applications

Abstract

Nanoparticles are a significant topic due to their applications in various fields, including biology, optics, catalysis, pharmaceutics, health, agriculture, and industry, with biosynthesis processes being quick, easy, and environmentally friendly. Due to their applications across multiple industries, silver nanoparticles, or AgNPs, have become the most desired nanoparticles with the recent development of nanotechnology. The physical, chemical, and biological characteristics of AgNPs are being studied. These characteristics are crucial for limiting the hazards associated with silver nanoparticles while optimizing their potential applications in many fields. A higher degree of toxicity in both the environment and living things could arise from the increasing use of silver nanoparticles in the product. Silver nanoparticles find application in wound care, anti-infective therapy, food, pharmaceutical, and cosmetic industries. As antioxidant, antiviral, anticancer, antifungal, anti-inflammatory, and microbiological agents, silver nanoparticles are widely used. Not only must the particles be nanoscale in order for silver nanoparticles to be present, but their production must also be simple and inexpensive to achieve. This paper aims to review the different methods of synthesis of silver nanoparticles, properties, characterization, and their applications. In specific, several chemical and green synthesis approaches for synthesising silver nanoparticles have been discussed. The morphology, size, thermal properties, toxicity properties, electrical properties, catalytic properties, and applications of silver nanoparticles are focused. The main focus is on the effective and efficient synthesis of pure silver nanoparticles and their potential applications.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385313643241010060814
2024-11-01
2025-01-19
Loading full text...

Full text loading...

References

  1. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  2. Gahlawat G. Choudhury A.R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances 2019 9 23 12944 12967 10.1039/C8RA10483B 35520790
    [Google Scholar]
  3. Mahmood R.I. Kadhim A.A. Ibraheem S. Albukhaty S. Mohammed-Salih H.S. Abbas R.H. Jabir M.S. Mohammed M.K.A. Nayef U.M. AlMalki F.A. Sulaiman G.M. Al-Karagoly H. Biosynthesis of copper oxide nanoparticles mediated Annona muricata as cytotoxic and apoptosis inducer factor in breast cancer cell lines. Sci. Rep. 2022 12 1 16165 10.1038/s41598‑022‑20360‑y 36171339
    [Google Scholar]
  4. Kim Y-J. Wang C. Mathiyalagan R. Aceituno V.C. Singh P. Ahn S. Wang D. Yang D.C. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomedicine 2016 11 3691 3701 10.2147/IJN.S97181 27570451
    [Google Scholar]
  5. Tiwari D.K. Behari J. Sen P. Application of nanoparticles in waste water treatment. World Appl. Sci. J. 2008 3 3 417 433
    [Google Scholar]
  6. Salavati-Niasari M. Davar F. Mir N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 2008 27 17 3514 3518 10.1016/j.poly.2008.08.020
    [Google Scholar]
  7. Bhaviripudi S. Mile E. Steiner S.A. Zare A.T. Dresselhaus M.S. Belcher A.M. Kong J. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 2007 129 6 1516 1517 10.1021/ja0673332 17283991
    [Google Scholar]
  8. Ealia SA. Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser.: Mater. Sci. Eng. 2017 263 3 032019 10.1088/1757‑899X/263/3/032019
    [Google Scholar]
  9. Delgado-Beleño Y. Martinez-Nuñez C.E. Cortez-Valadez M. Flores-López N.S. Flores-Acosta M. Optical properties of silver, silver sulfide and silver selenide nanoparticles and antibacterial applications. Mater. Res. Bull. 2018 99 385 392 10.1016/j.materresbull.2017.11.015
    [Google Scholar]
  10. Franci G. Falanga A. Galdiero S. Palomba L. Rai M. Morelli G. Galdiero M. Silver nanoparticles as potential antibacterial agents. Molecules 2015 20 5 8856 8874 10.3390/molecules20058856 25993417
    [Google Scholar]
  11. Jana S. Pal T. Synthesis, characterization and catalytic application of silver nanoshell coated functionalized polystyrene beads. J. Nanosci. Nanotechnol. 2007 7 6 2151 2156 10.1166/jnn.2007.785 17655008
    [Google Scholar]
  12. Dawadi S. Katuwal S. Gupta A. Lamichhane U. Thapa R. Jaisi S. Lamichhane G. Bhattarai D.P. Parajuli N. Current research on silver nanoparticles: Synthesis, characterization, and applications. J. Nanomater. 2021 2021 1 23 10.1155/2021/6687290
    [Google Scholar]
  13. Sondi I. Goia D.V. Matijevic E. Preparation of highly concentrated stable dispersions of monodispersed silver nanoparticles. J. Colloid Interface Sci. 2003 260 1 75 81 10.1016/S0021‑9797(02)00205‑9 12742036
    [Google Scholar]
  14. Abou El-Nour K.M.M. Eftaiha A. Al-Warthan A. Ammar R.A.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010 3 3 135 140 10.1016/j.arabjc.2010.04.008
    [Google Scholar]
  15. Zielińska A. Skwarek E. Zaleska A. Gazda M. Hupka J. Preparation of silver nanoparticles with controlled particle size. Procedia Chem. 2009 1 2 1560 1566 10.1016/j.proche.2009.11.004
    [Google Scholar]
  16. Iravani S. Korbekandi H. Mirmohammadi S.V. Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014 9 6 385 406 26339255
    [Google Scholar]
  17. Natsuki J. A review of silver nanoparticles: Synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 2015 4 5 325 10.11648/j.ijmsa.20150405.17
    [Google Scholar]
  18. Tsuruga S. Abe T. Preparation of electro-conductive inkjet inks through silver halide photographic emulsion. Proceedings of the Pan-Pacific Imaging Conference 2008 56 59
    [Google Scholar]
  19. Mafune F. Kohno J. Takeda Y. Kondow T. Sawabe H. Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B. 2000 104 39 9111 9117 10.1021/jp001336y
    [Google Scholar]
  20. Dolgaev S.I. Simakin A.V. Voronov V.V. Shafeev G.A. Bozon-Verduraz F. Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 2002 186 1-4 546 551 10.1016/S0169‑4332(01)00634‑1
    [Google Scholar]
  21. Tsuji T. Iryo K. Watanabe N. Tsuji M. Preparation of silver nanoparticles by laser ablation in solution: Influence of laser wavelength on particle size. Appl. Surf. Sci. 2002 202 1-2 80 85 10.1016/S0169‑4332(02)00936‑4
    [Google Scholar]
  22. Schmid G. Nanoparticles: From theory to application. Wiley VCH Weinheim, Germany 2011
    [Google Scholar]
  23. Palmero A. Alcala G. Alvarez R. Editorial for special issue: Nanostructured surfaces and thin films synthesis by physical vapor deposition. Nanomaterials (Basel) 2021 11 1 148 10.3390/nano11010148 33435296
    [Google Scholar]
  24. Guzmán M.G. Dille J. Godet S. Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. Int. J. Chem. Biomol. Eng. 2009 2 3 104 111
    [Google Scholar]
  25. Khan Z. Al-Thabaiti S.A. Obaid A.Y. Al-Youbi A.O. Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf. B Biointerfaces 2011 82 2 513 517 10.1016/j.colsurfb.2010.10.008 21050730
    [Google Scholar]
  26. Ijaz Hussain J. Kumar S. Adil Hashmi A. Khan Z. Silver nanoparticles: Preparation, characterization, and kinetics. Adv. Mater. Lett. 2011 2 3 188 194 10.5185/amlett.2011.1206
    [Google Scholar]
  27. Prabhu S. Poulose E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012 2 1 32 10.1186/2228‑5326‑2‑32
    [Google Scholar]
  28. Malik M.A. Wani M.Y. Hashim M.A. Microemulsion method: A novel route to synthesize organic and inorganic nanomaterials. Arab. J. Chem. 2012 5 4 397 417 10.1016/j.arabjc.2010.09.027
    [Google Scholar]
  29. Veerasamy R. Xin T.Z. Gunasagaran S. Xiang T.F.W. Yang E.F.C. Jeyakumar N. Dhanaraj S.A. Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 2011 15 2 113 120 10.1016/j.jscs.2010.06.004
    [Google Scholar]
  30. Kalishwaralal K. Deepak V. Ramkumarpandian S. Nellaiah H. Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 2008 62 29 4411 4413 10.1016/j.matlet.2008.06.051
    [Google Scholar]
  31. Vilchis-Nestor A.R. Sánchez-Mendieta V. Camacho-López M.A. Gómez-Espinosa R.M. Camacho-López M.A. Arenas-Alatorre J.A. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett. 2008 62 17-18 3103 3105 10.1016/j.matlet.2008.01.138
    [Google Scholar]
  32. Chokriwal A. Sharma M.M. Singh A. Biological synthesis of nanoparticles using bacteria and their applications. Am. J. PharmTech. Res. 2014 4 6 38 61
    [Google Scholar]
  33. Joy Prabu H. Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogon citronella, Solanum verbascifolium and Tylophora ovata. Karbala Int. J. Mod. Sci. 2015 1 4 237 246 10.1016/j.kijoms.2015.12.003
    [Google Scholar]
  34. Saifuddin N. Wong C.W. Yasumira A.A.N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J. Chem. 2009 6 1 61 70
    [Google Scholar]
  35. Rauwel P. Küünal S. Ferdov S. Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. 2015 2015 1 9 10.1155/2015/682749
    [Google Scholar]
  36. Yadav S. Khurana J.M. Cinnamomum tamala leaf extract-mediated green synthesis of Ag nanoparticles and their use in pyranopyrazles synthesis. Chin. J. Catal. 2015 36 7 1042 1046 10.1016/S1872‑2067(15)60853‑1
    [Google Scholar]
  37. Nam G. Purushothaman B. Rangasamy S. Song J.M. Investigating the versatility of multifunctional silver nanoparticles: Preparation and inspection of their potential as wound treatment agents. Int. Nano Lett. 2016 6 1 51 63 10.1007/s40089‑015‑0168‑1
    [Google Scholar]
  38. Bhat R.S. Almusallam J. Al Daihan S. Al-Dbass A. Biosynthesis of silver nanoparticles using Azadirachta indica leaves: Characterisation and impact on Staphylococcus aureus growth and glutathione‐S‐transferase activity. IET Nanobiotechnol. 2019 13 5 498 502 10.1049/iet‑nbt.2018.5133
    [Google Scholar]
  39. Mishra A. Mehdi S.J. Irshad M. Ali A. Sardar M. Moshahid M. Rizvi A. Effect of biologically synthesized silver nanoparticles on human cancer cells. Sci. Adv. Mater. 2012 4 12 1200 1206 10.1166/sam.2012.1414
    [Google Scholar]
  40. Narayanan K.B. Sakthivel N. Extracellular synthesis of silver nanoparticles using the leaf extract of Coleus amboinicus Lour. Mater. Res. Bull. 2011 46 10 1708 1713 10.1016/j.materresbull.2011.05.041
    [Google Scholar]
  41. Medda S. Hajra A. Dey U. Bose P. Mondal N.K. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl. Nanosci. 2015 5 7 875 880 10.1007/s13204‑014‑0387‑1
    [Google Scholar]
  42. Sobhy N.A. Ahmed H.M. El-Khateeb M.A. Synthesis and characterization of silver nanoparticles prepared from pomegranate peel extracts and its antibacterial activity. Solid State Phenom. 2023 342 3 10 10.4028/p‑f70yt9
    [Google Scholar]
  43. Sathyavathi R. Krishna M.B. Rao S.V. Saritha R. Rao D.N. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett. 2010 3 2 138 143 10.1166/asl.2010.1099
    [Google Scholar]
  44. Nilavukkarasi M. Vijayakumar S. Prathip Kumar S. Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency. Mater. Sci. Energy Technol. 2020 3 371 376 10.1016/j.mset.2020.02.008
    [Google Scholar]
  45. Ghoshal G. Singh M. Characterization of silver nano-particles synthesized using fenugreek leave extract and its antibacterial activity. Mater. Sci. Energy Technol. 2022 5 22 29 10.1016/j.mset.2021.10.001
    [Google Scholar]
  46. Gabriela Á.M. Gabriela M.O.V. Luis A.M. Reinaldo P.R. Michael H.M. Rodolfo G.P. Roberto V.B.J. Biosynthesis of silver nanoparticles using mint leaf extract (Mentha piperita) and their antibacterial activity. Adv. Sci. Eng. Med. 2017 9 11 914 923 10.1166/asem.2017.2076
    [Google Scholar]
  47. Alzubaidi A.K. Al-Kaabi W.J. Ali A.A. Albukhaty S. Al-Karagoly H. Sulaiman G.M. Asiri M. Khane Y. Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities. Appl. Sci. (Basel) 2023 13 4 2182 10.3390/app13042182
    [Google Scholar]
  48. Asha M.A. Senthilkumar R.S. Green synthesis and characterization of silver nanoparticles from Ocimum basilicum and their antimicrobial antioxidant and anticancer activity. Res. J. Pharm. Technol. 2020 13 12 5711 5715 10.5958/0974‑360X.2020.00994.4
    [Google Scholar]
  49. Arora S. Jain J. Rajwade J.M. Paknikar K.M. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol. Lett. 2008 179 2 93 100 10.1016/j.toxlet.2008.04.009 18508209
    [Google Scholar]
  50. Shervani Z. Ikushima Y. Sato M. Kawanami H. Hakuta Y. Yokoyama T. Nagase T. Kuneida H. Aramaki K. Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci. 2008 286 4 403 410 10.1007/s00396‑007‑1784‑8
    [Google Scholar]
  51. Kiss F.D. Miotto R. Ferraz A.C. Size effects on silver nanoparticles’ properties. Nanotechnology 2011 22 27 275708 10.1088/0957‑4484/22/27/275708 21597143
    [Google Scholar]
  52. Elechiguerra J.L. Burt J.L. Morones J.R. Camacho-Bragado A. Gao X. Lara H.H. Yacaman M.J. Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology 2005 3 1 6 10.1186/1477‑3155‑3‑6 15987516
    [Google Scholar]
  53. Pal S. Tak Y.K. Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007 73 6 1712 1720 10.1128/AEM.02218‑06 17261510
    [Google Scholar]
  54. Sondi I. Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004 275 1 177 182 10.1016/j.jcis.2004.02.012 15158396
    [Google Scholar]
  55. Syafiuddin A. Salmiati Salim M.R. Beng Hong Kueh A. Hadibarata T. Nur H. A review of silver nanoparticles: Research trends, global consumption, synthesis, properties, and future challenges. J. Chin. Chem. Soc. (Taipei) 2017 64 7 732 756 10.1002/jccs.201700067
    [Google Scholar]
  56. Ahamed M. AlSalhi M.S. Siddiqui M.K.J. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010 411 23-24 1841 1848 10.1016/j.cca.2010.08.016 20719239
    [Google Scholar]
  57. Kulthong K. Srisung S. Boonpavanitchakul K. Kangwansupamonkon W. Maniratanachote R. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part. Fibre Toxicol. 2010 7 8 10.1186/1743‑8977‑7‑8 20359338
    [Google Scholar]
  58. Morones J.R. Elechiguerra J.L. Camacho A. Holt K. Kouri J.B. Ramírez J.T. Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005 16 10 2346 2353 10.1088/0957‑4484/16/10/059 20818017
    [Google Scholar]
  59. Wang L. Zhang T. Li P. Huang W. Tang J. Wang P. Liu J. Yuan Q. Bai R. Li B. Zhang K. Zhao Y. Chen C. Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity. ACS Nano 2015 9 6 6532 6547 10.1021/acsnano.5b02483 25994391
    [Google Scholar]
  60. Vigneshwaran N. Ashtaputre N.M. Varadarajan P.V. Nachane R.P. Paralikar K.M. Balasubramanya R.H. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 2007 61 6 1413 1418 10.1016/j.matlet.2006.07.042
    [Google Scholar]
  61. Pandey S. De Klerk C. Kim J. Kang M. Fosso-Kankeu E. Eco friendly approach for synthesis, characterization and biological activities of milk protein stabilized silver nanoparticles. Polymers (Basel) 2020 12 6 1418 10.3390/polym12061418 32599956
    [Google Scholar]
  62. Mollick M.M.R. Bhowmick B. Maity D. Mondal D. Roy I. Sarkar J. Rana D. Acharya K. Chattopadhyay S. Chattopadhyay D. Green synthesis of silver nanoparticles-based nanofluids and investigation of their antimicrobial activities. Microfluid. Nanofluidics 2014 16 3 541 551 10.1007/s10404‑013‑1252‑3
    [Google Scholar]
  63. Sastry M. Patil V. Sainkar S.R. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J. Phys. Chem. B 1998 102 8 1404 1410 10.1021/jp9719873
    [Google Scholar]
  64. Martínez-Castañón G.A. Niño-Martínez N. Martínez-Gutierrez F. Martínez-Mendoza J.R. Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 2008 10 8 1343 1348 10.1007/s11051‑008‑9428‑6
    [Google Scholar]
  65. Asoro M. Damiano J. Ferreira P.J. Size effects on the melting temperature of silver nanoparticles: In-Situ TEM observations. Microsc. Microanal. 2009 15 S2 706 707 10.1017/S1431927609097013
    [Google Scholar]
  66. Asoro M.A. Kovar D. Ferreira P.J. In situ transmission electron microscopy observations of sublimation in silver nanoparticles. ACS Nano 2013 7 9 7844 7852 10.1021/nn402771j 23941466
    [Google Scholar]
  67. Roy B. Chakravorty D. Electrical conductance of silver nanoparticles grown in glass-ceramic. J. Phys. Condens. Matter 1990 2 47 9323 9334 10.1088/0953‑8984/2/47/007
    [Google Scholar]
  68. Navarro E. Piccapietra F. Wagner B. Marconi F. Kaegi R. Odzak N. Sigg L. Behra R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 2008 42 23 8959 8964 10.1021/es801785m 19192825
    [Google Scholar]
  69. Singh S. Bharti A. Meena V.K. Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci. Mater. Electron. 2014 25 9 3747 3752 10.1007/s10854‑014‑2085‑x
    [Google Scholar]
  70. Chen D. Qiao X. Qiu X. Chen J. Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J. Mater. Sci. 2009 44 4 1076 1081 10.1007/s10853‑008‑3204‑y
    [Google Scholar]
  71. Khodadadi B. Bordbar M. Nasrollahzadeh M. Achillea millefolium L. extract mediated green synthesis of waste peach kernel shell supported silver nanoparticles: Application of the nanoparticles for catalytic reduction of a variety of dyes in water. J. Colloid Interface Sci. 2017 493 85 93 10.1016/j.jcis.2017.01.012 28088570
    [Google Scholar]
  72. Gangula A. Podila R. M R. Karanam L. Janardhana C. Rao A.M. Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 2011 27 24 15268 15274 10.1021/la2034559 22026721
    [Google Scholar]
  73. Edison T.N.J.I. Lee Y.R. Sethuraman M.G. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 161 122 129 10.1016/j.saa.2016.02.044 26967513
    [Google Scholar]
  74. Sreedhar B. Devi D.K. Yada D. Selective hydrogenation of nitroarenes using gum acacia supported Pt colloid an effective reusable catalyst in aqueous medium. Catal. Commun. 2011 12 11 1009 1014 10.1016/j.catcom.2011.02.027
    [Google Scholar]
  75. Shah D. Kaur H. Resin-trapped gold nanoparticles: An efficient catalyst for reduction of nitro compounds and Suzuki-Miyaura coupling. J. Mol. Catal. Chem. 2014 381 70 76 10.1016/j.molcata.2013.10.004
    [Google Scholar]
  76. Kalbasi R.J. Nourbakhsh A.A. Babaknezhad F. Synthesis and characterization of Ni nanoparticles-polyvinylamine/SBA-15 catalyst for simple reduction of aromatic nitro compounds. Catal. Commun. 2011 12 11 955 960 10.1016/j.catcom.2011.02.019
    [Google Scholar]
  77. Atarod M. Nasrollahzadeh M. Mohammad Sajadi S. Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol. J. Colloid Interface Sci. 2016 465 249 258 10.1016/j.jcis.2015.11.060 26674242
    [Google Scholar]
  78. Edison T.N.J.I. Atchudan R. Kamal C. Lee Y.R. Caulerpa racemosa: A marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess Biosyst. Eng. 2016 39 9 1401 1408 10.1007/s00449‑016‑1616‑7 27129459
    [Google Scholar]
  79. Vidhu V.K. Philip D. Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 2014 56 54 62 10.1016/j.micron.2013.10.006 24210247
    [Google Scholar]
  80. Chou K.S. Lai Y.S. Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids. Mater. Chem. Phys. 2004 83 1 82 88 10.1016/j.matchemphys.2003.09.026
    [Google Scholar]
  81. El-Sayed M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001 34 4 257 264 10.1021/ar960016n 11308299
    [Google Scholar]
  82. Tang J.D. Mura C. Lampe K.J. Stimuli-responsive, pentapeptide, nanofiber hydrogel for tissue engineering. J. Am. Chem. Soc. 2019 141 12 4886 4899 10.1021/jacs.8b13363 30830776
    [Google Scholar]
  83. Carvalho P.M. Felício M.R. Santos N.C. Gonçalves S. Domingues M.M. Application of light scattering techniques to nanoparticle characterization and development. Front Chem. 2018 6 237 10.3389/fchem.2018.00237 29988578
    [Google Scholar]
  84. Jing S. Jiang H. Hu Y. Li C. Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode. J. Mater. Chem. A Mater. Energy Sustain. 2014 2 39 16360 16364 10.1039/C4TA03370A
    [Google Scholar]
  85. Murdock R.C. Braydich-Stolle L. Schrand A.M. Schlager J.J. Hussain S.M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008 101 2 239 253 10.1093/toxsci/kfm240 17872897
    [Google Scholar]
  86. Lee K.S. El-Sayed M.A. Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B 2006 110 39 19220 19225 10.1021/jp062536y 17004772
    [Google Scholar]
  87. Al-Khafaji A.R. Al-Azawi A.H. Green method synthesis of silver nanoparticles using leaves extracts of Rosmarinus officinalis. Iran. J. Biotechnol. 2022 21 2 251 267
    [Google Scholar]
  88. Aslam M. Rani A. Pant B.N. Singh P. Pandey G. Recent development in the production and utilization of plant biomass-based nanomaterials. Biomass-Based Functional Carbon Nanostructures for Supercapacitors Springer Singapore Tiwari S.K. Bystrzejewski M. Kumar V. 2023 331 368 10.1007/978‑981‑99‑0996‑4_12
    [Google Scholar]
  89. Majdalawieh A. Kanan M.C. El-Kadri O. Kanan S.M. Recent advances in gold and silver nanoparticles: Synthesis and applications. J. Nanosci. Nanotechnol. 2014 14 7 4757 4780 10.1166/jnn.2014.9526 24757945
    [Google Scholar]
  90. Almatroudi A. Silver nanoparticles: Synthesis, characterisation and biomedical applications. Open Life Sci. 2020 15 1 819 839 10.1515/biol‑2020‑0094 33817269
    [Google Scholar]
  91. Guan Q. Xia C. Li W. Bio-friendly controllable synthesis of silver nanoparticles and their enhanced antibacterial property. Catal. Today 2019 327 196 202 10.1016/j.cattod.2018.05.004
    [Google Scholar]
  92. Li W.R. Sun T.L. Zhou S.L. Ma Y.K. Shi Q.S. Xie X.B. Huang X-M. A comparative analysis of antibacterial activity, dynamics, and effects of silver ions and silver nanoparticles against four bacterial strains. Int. Biodeterior. Biodegradation 2017 123 304 310 10.1016/j.ibiod.2017.07.015
    [Google Scholar]
  93. Shao Y. Wu C. Wu T. Yuan C. Chen S. Ding T. Ye X. Hu Y. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 2018 111 1281 1292 10.1016/j.ijbiomac.2018.01.012 29307808
    [Google Scholar]
  94. Yan X. He B. Liu L. Qu G. Shi J. Hu L. Jiang G. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: Proteomics approach. Metallomics 2018 10 4 557 564 10.1039/C7MT00328E 29637212
    [Google Scholar]
  95. Ramezanpour M. Leung S.S.W. Delgado-Magnero K.H. Bashe B.Y.M. Thewalt J. Tieleman D.P. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim. Biophys. Acta Biomembr. 2016 1858 7 1688 1709 10.1016/j.bbamem.2016.02.028 26930298
    [Google Scholar]
  96. Jahangirian H. Ghasemian lemraski E. Webster T.J. Rafiee-Moghaddam R. Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomedicine 2017 12 2957 2978 10.2147/IJN.S127683 28442906
    [Google Scholar]
  97. Jiang Q. Yu S. Li X. Ma C. Li A. Evaluation of local anesthetic effects of Lidocaine-Ibuprofen ionic liquid stabilized silver nanoparticles in Male Swiss mice. J. Photochem. Photobiol. B 2018 178 367 370 10.1016/j.jphotobiol.2017.11.028 29190552
    [Google Scholar]
  98. Soni N. Dhiman R.C. Phytochemical, anti-oxidant, larvicidal, and antimicrobial activities of castor (Ricinus communis) synthesized silver nanoparticles. Chin. Herb. Med. 2017 9 3 289 294 10.1016/S1674‑6384(17)60106‑0
    [Google Scholar]
  99. Al-Obaidi H. Kalgudi R. Zariwala M.G. Fabrication of inhaled hybrid silver/ciprofloxacin nanoparticles with synergetic effect against Pseudomonas aeruginosa. Eur. J. Pharm. Biopharm. 2018 128 27 35 10.1016/j.ejpb.2018.04.006 29654885
    [Google Scholar]
  100. Petrov P.D. Yoncheva K. Gancheva V. Konstantinov S. Trzebicka B. Multifunctional block copolymer nanocarriers for co-delivery of silver nanoparticles and curcumin: Synthesis and enhanced efficacy against tumor cells. Eur. Polym. J. 2016 81 24 33 10.1016/j.eurpolymj.2016.05.010
    [Google Scholar]
  101. Muhammad Z. Raza A. Ghafoor S. Naeem A. Naz S.S. Riaz S. Ahmed W. Rana N.F. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur. J. Pharm. Sci. 2016 91 251 255 10.1016/j.ejps.2016.04.029 27132812
    [Google Scholar]
  102. Tiwari G. Tiwari R. Bannerjee S.K. Bhati L. Pandey S. Pandey P. Sriwastawa B. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012 2 1 2 11 10.4103/2230‑973X.96920 23071954
    [Google Scholar]
  103. Prashob Peter KJ. Multi-functional silver nanoparticles for drug delivery: A review. Int. J. Cur. Res. Rev. 2017 9 8 1 5
    [Google Scholar]
  104. Heilman S. Silva L.G.A. Silver and titanium nanoparticles used as coating on polyurethane catheters. J. Nano Res. 2017 47 17 23 10.4028/www.scientific.net/JNanoR.47.17
    [Google Scholar]
  105. Thomas R. Mathew S. Nayana A.R. Mathews J. Radhakrishnan E.K. Microbially and phytofabricated AgNPs with different mode of bactericidal action were identified to have comparable potential for surface fabrication of central venous catheters to combat Staphylococcus aureus biofilm. J. Photochem. Photobiol. B 2017 171 96 103 10.1016/j.jphotobiol.2017.04.036 28482226
    [Google Scholar]
  106. Deng J. Wu K. Yang Y. Zhang Y. Lin C. Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy. Int. J. Nanomedicine 2015 7241 7241 10.2147/IJN.S92307
    [Google Scholar]
  107. Roe D. Karandikar B. Bonn-Savage N. Gibbins B. Roullet J.B. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 2008 61 4 869 876 10.1093/jac/dkn034 18305203
    [Google Scholar]
  108. Kumar C.G. Sujitha P. Green synthesis of Kocuran-functionalized silver glyconanoparticles for use as antibiofilm coatings on silicone urethral catheters. Nanotechnology 2014 25 32 325101 10.1088/0957‑4484/25/32/325101 25060660
    [Google Scholar]
  109. Pollini M. Paladini F. Catalano M. Taurino A. Licciulli A. Maffezzoli A. Sannino A. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J. Mater. Sci. Mater. Med. 2011 22 9 2005 2012 10.1007/s10856‑011‑4380‑x 21691829
    [Google Scholar]
  110. Aflori M. Surface characterization of peritoneal dialysis catheter containing silver nanoparticles. Rev. Roum. Chim. 2014 59 6-7 523 526
    [Google Scholar]
  111. Cheng L. Zhang K. Weir M.D. Melo M.A.S. Zhou X. Xu H.H.K. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine (Lond.) 2015 10 4 627 641 10.2217/nnm.14.191 25723095
    [Google Scholar]
  112. Divakar D.D. Jastaniyah N.T. Altamimi H.G. Alnakhli Y.O. Muzaheed Alkheraif A.A. Haleem S. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. Int. J. Biol. Macromol. 2018 108 790 797 10.1016/j.ijbiomac.2017.10.166 29102795
    [Google Scholar]
  113. Kaur P. Luthra R. Silver nanoparticles in dentistry: An emerging trend. SRM J. Res. Dent. Sci. 2016 7 3 162 165 10.4103/0976‑433X.188808
    [Google Scholar]
  114. Noronha V.T. Paula A.J. Durán G. Galembeck A. Cogo-Müller K. Franz-Montan M. Durán N. Silver nanoparticles in dentistry. Dent. Mater. 2017 33 10 1110 1126 10.1016/j.dental.2017.07.002 28779891
    [Google Scholar]
  115. Corrêa J.M. Mori M. Sanches H.L. Cruz A.D. Poiate E. Poiate I.A.V.P. Silver nanoparticles in dental biomaterials. Int. J. Biomater. 2015 2015 1 9 10.1155/2015/485275 25667594
    [Google Scholar]
  116. Nguyen S. Hiorth M. Advanced drug delivery systems for local treatment of the oral cavity. Ther. Deliv. 2015 6 5 595 608 10.4155/tde.15.5 26001175
    [Google Scholar]
  117. Pokrowiecki R. Zaręba T. Szaraniec B. Pałka K. Mielczarek A. Menaszek E. Tyski S. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery. Int. J. Nanomedicine 2017 12 4285 4297 10.2147/IJN.S131163 28652733
    [Google Scholar]
  118. Lee S.J. Heo M. Lee D. Han S. Moon J.H. Lim H.N. Kwon I.K. Preparation and characterization of antibacterial orthodontic resin containing silver nanoparticles. Appl. Surf. Sci. 2018 432 317 323 10.1016/j.apsusc.2017.04.030
    [Google Scholar]
  119. Slane J. Vivanco J. Rose W. Ploeg H.L. Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Mater. Sci. Eng. C 2015 48 188 196 10.1016/j.msec.2014.11.068 25579913
    [Google Scholar]
  120. Freire P.L.L. Albuquerque A.J.R. Farias I.A.P. da Silva T.G. Aguiar J.S. Galembeck A. Flores M.A.P. Sampaio F.C. Stamford T.C.M. Rosenblatt A. Antimicrobial and cytotoxicity evaluation of colloidal chitosan – silver nanoparticles – fluoride nanocomposites. Int. J. Biol. Macromol. 2016 93 Pt A 896 903 10.1016/j.ijbiomac.2016.09.052 27642129
    [Google Scholar]
  121. Wang J. Dong X. Yu Q. Baker S.N. Li H. Larm N.E. Baker G.A. Chen L. Tan J. Chen M. Incorporation of antibacterial agent derived deep eutectic solvent into an active dental composite. Dent. Mater. 2017 33 12 1445 1455 10.1016/j.dental.2017.09.014 29074163
    [Google Scholar]
  122. Wilkinson L.J. White R.J. Chipman J.K. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J. Wound Care 2011 20 11 543 549 10.12968/jowc.2011.20.11.543 22240850
    [Google Scholar]
  123. Chowdhury S. De M. Guha R. Batabyal S. Samanta I. Hazra S.K. Ghosh T.K. Konar A. Hazra S. Influence of silver nanoparticles on post-surgical wound healing following topical application. Eur. J. Nanomed. 2014 6 4 10.1515/ejnm‑2014‑0030
    [Google Scholar]
  124. You C. Li Q. Wang X. Wu P. Ho J.K. Jin R. Zhang L. Shao H. Han C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 2017 7 1 10489 10.1038/s41598‑017‑10481‑0 28874692
    [Google Scholar]
  125. Zulkifli F.H. Hussain F.S.J. Zeyohannes S.S. Rasad M.S.B.A. Yusuff M.M. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater. Sci. Eng. C 2017 79 151 160 10.1016/j.msec.2017.05.028 28629002
    [Google Scholar]
  126. Gong C.P. Li S.C. Wang R.Y. Development of biosynthesized silver nanoparticles based formulation for treating wounds during nursing care in hospitals. J. Photochem. Photobiol. B 2018 183 137 141 10.1016/j.jphotobiol.2018.04.030 29705505
    [Google Scholar]
  127. Hendi A. Silver nanoparticles mediate differential responses in some of liver and kidney functions during skin wound healing. J. King Saud Univ. Sci. 2011 23 1 47 52 10.1016/j.jksus.2010.06.006
    [Google Scholar]
  128. Hebeish A. El-Rafie M.H. EL-Sheikh M.A. Seleem A.A. El-Naggar M.E. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int. J. Biol. Macromol. 2014 65 509 515 10.1016/j.ijbiomac.2014.01.071 24530328
    [Google Scholar]
  129. Hong Hu Y.Y. A review on antimicrobial silver absorbent wound dressings applied to exuding wounds. J. Microb. Biochem. Technol. 2015 7 4 10.4172/1948‑5948.1000212
    [Google Scholar]
  130. Thapa R.K. Kim J.H. Jeong J.H. Shin B.S. Choi H.G. Yong C.S. Kim J.O. Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids Surf. B Biointerfaces 2017 153 95 103 10.1016/j.colsurfb.2017.02.012 28231500
    [Google Scholar]
  131. Rajeshkumar S. Malarkodi C. Vanaja M. Annadurai G. Anticancer and enhanced antimicrobial activity of biosynthesizd silver nanoparticles against clinical pathogens. J. Mol. Struct. 2016 1116 165 173 10.1016/j.molstruc.2016.03.044
    [Google Scholar]
  132. Pongrac I.M. Ahmed L.B. Mlinarić H. Jurašin D.D. Pavičić I. Marjanović Čermak A.M. Milić M. Gajović S. Vinković Vrček I. Surface coating affects uptake of silver nanoparticles in neural stem cells. J. Trace Elem. Med. Biol. 2018 50 684 692 10.1016/j.jtemb.2017.12.003 29273317
    [Google Scholar]
  133. Mattea F. Vedelago J. Malano F. Gomez C. Strumia M.C. Valente M. Silver nanoparticles in X-ray biomedical applications. Radiat. Phys. Chem. 2017 130 442 450 10.1016/j.radphyschem.2016.10.008
    [Google Scholar]
  134. Vedelago J. Gomez C.G. Valente M. Mattea F. Green synthesis of silver nanoparticles aimed at improving theranostics. Radiat. Phys. Chem. 2018 146 55 67 10.1016/j.radphyschem.2018.01.001
    [Google Scholar]
  135. Jiang W. Rutherford D. Vuong T. Liu H. Nanomaterials for treating cardiovascular diseases: A review. Bioact. Mater. 2017 2 4 185 198 10.1016/j.bioactmat.2017.11.002 29744429
    [Google Scholar]
  136. Gonzalez C. Rosas-Hernandez H. Ramirez-Lee M.A. Salazar-García S. Ali S.F. Role of silver nanoparticles (AgNPs) on the cardiovascular system. Arch. Toxicol. 2016 90 3 493 511 10.1007/s00204‑014‑1447‑8 25543135
    [Google Scholar]
  137. Ramirez-Lee M.A. Aguirre-Bañuelos P. Martinez-Cuevas P.P. Espinosa-Tanguma R. Chi-Ahumada E. Martinez-Castañon G.A. Gonzalez C. Evaluation of cardiovascular responses to silver nanoparticles (AgNPs) in spontaneously hypertensive rats. Nanomedicine 2018 14 2 385 395 10.1016/j.nano.2017.11.013 29175596
    [Google Scholar]
  138. Rai M. Kon K. Ingle A. Duran N. Galdiero S. Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 2014 98 5 1951 1961 10.1007/s00253‑013‑5473‑x 24407450
    [Google Scholar]
  139. Shams S.F. Ghazanfari M.R. Schmitz-Antoniak C. Magnetic-plasmonic heterodimer nanoparticles: Designing contemporarily features for emerging biomedical diagnosis and treatments. Nanomaterials (Basel) 2019 9 1 97 10.3390/nano9010097 30642128
    [Google Scholar]
  140. Han C. Xu K. Liu Q. Liu X. Li J. Colorimetric sensing of cysteine using label-free silver nanoparticles. Sens. Actuators B Chem. 2014 202 574 582 10.1016/j.snb.2014.05.139
    [Google Scholar]
  141. Kneipp K. Kneipp H. Itzkan I. Dasari R.R. Feld M.S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999 99 10 2957 2976 10.1021/cr980133r 11749507
    [Google Scholar]
  142. Qian X. Peng X.H. Ansari D.O. Yin-Goen Q. Chen G.Z. Shin D.M. Yang L. Young A.N. Wang M.D. Nie S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008 26 1 83 90 10.1038/nbt1377 18157119
    [Google Scholar]
  143. Celikbas E. Balaban S. Evran S. Coskunol H. Timur S. A bottom-up approach for developing aptasensors for abused drugs: Biosensors in forensics. Biosensors (Basel) 2019 9 4 118 10.3390/bios9040118 31581533
    [Google Scholar]
  144. Jain P.K. Huang X. El-Sayed I.H. El-Sayed M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008 41 12 1578 1586 10.1021/ar7002804 18447366
    [Google Scholar]
  145. Hussain Z. Abourehab MA. Khan S. Thu HE. Chapter 9 - Silver nanoparticles: A promising nanoplatform for targeted delivery of therapeutics and optimized therapeutic efficacy. Metal Nanoparticles for Drug Delivery and Diagnostic Applications Elsevier 2020 141 173 10.1016/B978‑0‑12‑816960‑5.00009‑4
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385313643241010060814
Loading
/content/journals/pnt/10.2174/0122117385313643241010060814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test