Skip to content
2000
image of Liquid Crystalline Lipid Nanoparticles: Emerging Trends and Applications in Skin Cancer

Abstract

Liquid crystalline lipid nanoparticles (LCNPs) represent a type of membrane-based nano-carriers formed through the self-assembly of lyotropic lipids. These lipids, such as unsaturated monoglycerides, phospholipids, and co-lipids, create liquid crystals or vesicles with an aqueous core enclosed by a natural or synthetic phospholipid bilayer upon exposure to an aqueous medium. Liquid crystalline lipid nanoparticles (LCNPs), akin to liposomes, have garnered significant attention as nanocarriers suitable for a diverse range of hydrophobic and hydrophilic molecules. Their notable structural advantage lies in a mono-channel network organization and the presence of multiple compartments, resulting in heightened encapsulation efficiency for various substances. Cubosomes, spongosomes, hexosomes, and multicompartment nanoparticles are examples of lipid nanocarriers with interior liquid crystalline structures that have recently gained a lot of interest as effective drug delivery systems. Additionally, LCNPs facilitate the sustained release of encapsulated compounds, including therapeutic macromolecules. This review delves into the structure of liquid crystalline lipid nanoparticles, explores preparation techniques, and outlines their applications in the context of skin cancer.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385312450240816055942
2024-06-04
2025-01-19
Loading full text...

Full text loading...

References

  1. Mertins O. Mathews P.D. Angelova A. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials 2020 10 5 963 10.3390/nano10050963 32443582
    [Google Scholar]
  2. Rakotoarisoa M. Angelova A. Amphiphilic Nanocarrier Systems for Curcumin Delivery in Neurodegenerative Disorders. In book: The Road from Nanomedicine to Precision Medicine 2020 10.1201/9781003027058‑16
    [Google Scholar]
  3. Deshpande A Patil TS Nanocarrier technologies for enhancing the solubility and dissolution rate of API. InMedicinal Chemistry with Pharmaceutical Product Development Apple Academic Press 2019 155 234 10.1201/9780429487842‑5
    [Google Scholar]
  4. Yap S.L. Yu H. Li S. Drummond C.J. Conn C.E. Tran N. Cell interactions with lipid nanoparticles possessing different internal nanostructures: Liposomes, bicontinuous cubosomes, hexosomes, and discontinuous micellar cubosomes. J. Colloid Interface Sci. 2024 656 409 423 10.1016/j.jcis.2023.11.059 38000253
    [Google Scholar]
  5. Abourehab M.A.S. Ansari M.J. Singh A. Hassan A. Abdelgawad M.A. Shrivastav P. Abualsoud B.M. Amaral L.S. Pramanik S. Cubosomes as an emerging platform for drug delivery: a review of the state of the art. J. Mater. Chem. B Mater. Biol. Med. 2022 10 15 2781 2819 10.1039/D2TB00031H 35315858
    [Google Scholar]
  6. Iqbal S. Zaman M. Waqar M.A. Sarwar H.S. Jamshaid M. Vesicular approach of cubosomes, its components, preparation techniques, evaluation and their appraisal for targeting cancer cells. J. Liposome Res. 2024 34 2 368 384 10.1080/08982104.2023.2272643 37873797
    [Google Scholar]
  7. Maslizan M. Haris M.S. Ajat M. Md Jamil S.N.A. Azhar S.C. Zahid N.I. Mat Azmi I.D. Non-lamellar lyotropic liquid crystalline nanoparticles as nanocarriers for enhanced drug encapsulation of atorvastatin calcium and proanthocyanidins. Chem. Phys. Lipids 2024 260 105377 10.1016/j.chemphyslip.2024.105377 38325712
    [Google Scholar]
  8. Pei J. Yan Y. Palanisamy C.P. Jayaraman S. Natarajan P.M. Umapathy V.R. Gopathy S. Roy J.R. Sadagopan J.C. Thalamati D. Mironescu M. Materials-based drug delivery approaches: Recent advances and future perspectives. Green Processing and Synthesis 2024 13 1 20230094 10.1515/gps‑2023‑0094
    [Google Scholar]
  9. Attri N. Das S. Banerjee J. Shamsuddin S.H. Dash S.K. Pramanik A. Liposomes to cubosomes: The evolution of lipidic nanocarriers and their cutting-edge biomedical applications. ACS Appl. Bio Mater. 2024 7 5 2677 2694 10.1021/acsabm.4c00153 38613498
    [Google Scholar]
  10. Munir M. Zaman M. Waqar M.A. Khan M.A. Alvi M.N. Solid lipid nanoparticles: A versatile approach for controlled release and targeted drug delivery. J. Liposome Res. 2024 34 2 335 348 10.1080/08982104.2023.2268711 37840238
    [Google Scholar]
  11. Sala M. Diab R. Elaissari A. Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 2018 535 1-2 1 17 10.1016/j.ijpharm.2017.10.046 29111097
    [Google Scholar]
  12. Fornasier M. Murgia S. Non-lamellar lipid liquid crystalline nanoparticles: A smart platform for nanomedicine applications. Frontiers in Soft Matter 2023 3 1109508 10.3389/frsfm.2023.1109508
    [Google Scholar]
  13. Sharma P. Dhawan S. Nanda S. Cubosome: A potential liquid crystalline carrier system. Curr. Pharm. Des. 2020 26 27 3300 3316 10.2174/1381612826666200617162424 32552637
    [Google Scholar]
  14. Rakotoarisoa M. Angelov B. Drechsler M. Nicolas V. Bizien T. Gorshkova Y.E. Deng Y. Angelova A. Liquid crystalline lipid nanoparticles for combined delivery of curcumin, fish oil and BDNF: In vitro neuroprotective potential in a cellular model of tunicamycin-induced endoplasmic reticulum stress. Smart Materials in Medicine 2022 3 274 288 10.1016/j.smaim.2022.03.001
    [Google Scholar]
  15. Angelova A Angelov B Deng Y. Lipid Membranes: Fusion, Instabilities, and Cubic Structure Formation. Biological Soft Matter: Fundamentals, Properties, and Applications 2021 115 152
    [Google Scholar]
  16. Araújo-Silva H Teixeira PV Gomes AC Lúcio M Lopes CM Lyotropic liquid crystalline 2D and 3D mesophases: Advanced materials for multifunctional anticancer nanosystems. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2023 189011
    [Google Scholar]
  17. Tan C. Hosseini S.F. Jafari S.M. Cubosomes and hexosomes as novel nanocarriers for bioactive compounds. J. Agric. Food Chem. 2022 70 5 1423 1437 10.1021/acs.jafc.1c06747 35089018
    [Google Scholar]
  18. Shan X. Luo L. Yu Z. You J. Recent advances in versatile inverse lyotropic liquid crystals. J. Control. Release 2022 348 1 21 10.1016/j.jconrel.2022.05.036 35636617
    [Google Scholar]
  19. Kaasgaard T. Drummond C.J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys. Chem. Chem. Phys. 2006 8 43 4957 4975 10.1039/b609510k 17091149
    [Google Scholar]
  20. Zahid N.I. Salim M. Liew C.Y. Boyd B.J. Hashim R. Structural investigation and steric stabilisation of Guerbet glycolipid-based cubosomes and hexosomes using triblock polyethylene oxide-polypropylene oxide-polyethylene oxide copolymers. Colloids Surf. A Physicochem. Eng. Asp. 2022 648 129212 10.1016/j.colsurfa.2022.129212
    [Google Scholar]
  21. Chakraborty S. Dhibar M. Das A. Swain K. Pattnaik S. A Critical Appraisal of Lipid Nanoparticles Deployed in Cancer Pharmacotherapy. Recent Advances in Drug Delivery and Formulation 2023 17 2 132 151 10.2174/2667387817666230726140745 37493164
    [Google Scholar]
  22. Lopes L.B. Ferreira D.A. de Paula D. Garcia M.T.J. Thomazini J.A. Fantini M.C.A. Bentley M.V.L.B. Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A. Pharm. Res. 2006 23 6 1332 1342 10.1007/s11095‑006‑0143‑7 16715364
    [Google Scholar]
  23. Swarnakar N.K. Jain V. Dubey V. Mishra D. Jain N.K. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm. Res. 2007 24 12 2223 2230 10.1007/s11095‑007‑9409‑y 17828445
    [Google Scholar]
  24. Boyd B.J. Whittaker D.V. Khoo S.M. Davey G. Hexosomes formed from glycerate surfactants—Formulation as a colloidal carrier for irinotecan. Int. J. Pharm. 2006 318 1-2 154 162 10.1016/j.ijpharm.2006.03.010 16621358
    [Google Scholar]
  25. Chen Y. Angelova A. Angelov B. Drechsler M. Garamus V.M. Willumeit-Römer R. Zou A. Sterically stabilized spongosomes for multidrug delivery of anticancer nanomedicines. J. Mater. Chem. B Mater. Biol. Med. 2015 3 39 7734 7744 10.1039/C5TB01193K 32264582
    [Google Scholar]
  26. Zou A. Li Y. Chen Y. Angelova A. Garamus V.M. Li N. Drechsler M. Angelov B. Gong Y. Self-assembled stable sponge-type nanocarries for Brucea javanica oil delivery. Colloids Surf. B Biointerfaces 2017 153 310 319 10.1016/j.colsurfb.2017.02.031 28285062
    [Google Scholar]
  27. Gaballa SA El Garhy OH Abdelkader H Cubosomes: Composition, preparation, and drug delivery applications. Journal of advanced biomedical and pharmaceutical sciences 2020 3 1 1 9
    [Google Scholar]
  28. Garg G. Saraf S. Saraf S. Cubosomes: An Overview. Biol. Pharm. Bull. 2007 30 2 350 353 10.1248/bpb.30.350 17268078
    [Google Scholar]
  29. Hundekar Y.R. Saboji J.K. Patil S.M. Nanjwade B.K. Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration. World J. Pharm. Pharm. Sci. 2014 3 5 523 539
    [Google Scholar]
  30. Karami Z. Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov. Today 2016 21 5 789 801 10.1016/j.drudis.2016.01.004 26780385
    [Google Scholar]
  31. Gustafsson J. Ljusberg-Wahren H. Almgren M. Larsson K. Submicron particles of reversed lipid phases in water stabilized by a nonionic amphiphilic polymer. Langmuir 1997 13 26 6964 6971 10.1021/la970566+
    [Google Scholar]
  32. Lasfargues M. Geng Q. Cao H. Ding Y. Mechanical dispersion of nanoparticles and its effect on the specific heat capacity of impure binary nitrate salt mixtures. Nanomaterials 2015 5 3 1136 1146 10.3390/nano5031136 28347056
    [Google Scholar]
  33. Spicer P.T. Hayden K.L. Lynch M.L. Ofori-Boateng A. Burns J.L. Novel process for producing cubic liquid crystalline nanoparticles (cubosomes). Langmuir 2001 17 19 5748 5756 10.1021/la010161w
    [Google Scholar]
  34. Salentinig S. Yaghmur A. Guillot S. Glatter O. Preparation of highly concentrated nanostructured dispersions of controlled size. J. Colloid Interface Sci. 2008 326 1 211 220 10.1016/j.jcis.2008.07.021 18687442
    [Google Scholar]
  35. Hirlekar R. Jain S. Patel M. Garse H. Kadam V. Hexosomes: a novel drug delivery system. Curr. Drug Deliv. 2010 7 1 28 35 10.2174/156720110790396526 20044910
    [Google Scholar]
  36. Boyd B.J. Rizwan S.B. Dong Y.D. Hook S. Rades T. Self-assembled geometric liquid-crystalline nanoparticles imaged in three dimensions: hexosomes are not necessarily flat hexagonal prisms. Langmuir 2007 23 25 12461 12464 10.1021/la7029714 17988167
    [Google Scholar]
  37. Li T. Senesi A.J. Lee B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 2016 116 18 11128 11180 10.1021/acs.chemrev.5b00690 27054962
    [Google Scholar]
  38. Agbabiaka A. Wiltfong M. Park C. Small angle X‐ray scattering technique for the particle size distribution of nonporous nanoparticles. Journal of Nanoparticles 2013 2013 1 1 11 10.1155/2013/640436
    [Google Scholar]
  39. Nirschl H. Guo X. Characterisation of structured and functionalised particles by small-angle X-ray scattering (SAXS). Chem. Eng. Res. Des. 2018 136 431 446 10.1016/j.cherd.2018.06.012
    [Google Scholar]
  40. Andreazza P. Probing nanoalloy structure and morphology by X-ray scattering methods. InNanoalloys: Synthesis, Structure and Properties Springer London 2012 69 112
    [Google Scholar]
  41. Zubavichus Y.V. Slovokhotov Y.L. X-Ray synchrotron radiation in physicochemical studies. Russ. Chem. Rev. 2001 70 5 373 403 10.1070/RC2001v070n05ABEH000656
    [Google Scholar]
  42. Mori Y. Furukawa M. Hayashi T. Nakamura K. Size distribution of gold nanoparticles used by small angle X-ray scattering. Particul. Sci. Technol. 2006 24 1 97 103 10.1080/02726350500403215
    [Google Scholar]
  43. Kulkarni C.V. Yaghmur A. Steinhart M. Kriechbaum M. Rappolt M. Effects of high pressure on internally self-assembled lipid nanoparticles: A synchrotron small-angle X-ray scattering (SAXS) study. Langmuir 2016 32 45 11907 11917 10.1021/acs.langmuir.6b03300 27782407
    [Google Scholar]
  44. Lyu Z. Yao L. Chen W. Kalutantirige F.C. Chen Q. Electron microscopy studies of soft nanomaterials. Chem. Rev. 2023 123 7 4051 4145 10.1021/acs.chemrev.2c00461 36649190
    [Google Scholar]
  45. Gao M. Kim Y.K. Zhang C. Borshch V. Zhou S. Park H.S. Jákli A. Lavrentovich O.D. Tamba M.G. Kohlmeier A. Mehl G.H. Weissflog W. Studer D. Zuber B. Gnägi H. Lin F. Direct observation of liquid crystals using cryo‐TEM: Specimen preparation and low‐dose imaging. Microsc. Res. Tech. 2014 77 10 754 772 10.1002/jemt.22397 25045045
    [Google Scholar]
  46. Kathe N. Henriksen B. Chauhan H. Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations. Drug Dev. Ind. Pharm. 2014 40 12 1565 1575 10.3109/03639045.2014.909840 24766553
    [Google Scholar]
  47. Tee J.K. Yip L.X. Tan E.S. Santitewagun S. Prasath A. Ke P.C. Ho H.K. Leong D.T. Nanoparticles’ interactions with vasculature in diseases. Chem. Soc. Rev. 2019 48 21 5381 5407 10.1039/C9CS00309F 31495856
    [Google Scholar]
  48. Patel J. Patel A. Toxicity of Nanomaterials on the Liver, Kidney, and Spleen. Biointeractions of Nanomaterials. 2015 1 286 306
    [Google Scholar]
  49. Saha R.N. Vasanthakumar S. Bende G. Snehalatha M. Nanoparticulate drug delivery systems for cancer chemotherapy. Mol. Membr. Biol. 2010 27 7 215 231 10.3109/09687688.2010.510804 20939772
    [Google Scholar]
  50. Varenne F. Hillaireau H. Bataille J. Smadja C. Barratt G. Vauthier C. Application of validated protocols to characterize size and zeta potential of dispersed materials using light scattering methods. Colloids Surf. A Physicochem. Eng. Asp. 2019 560 418 425 10.1016/j.colsurfa.2018.09.006
    [Google Scholar]
  51. Rahman I.A. Vejayakumaran P. Sipaut C.S. Ismail J. Chee C.K. Size-dependent physicochemical and optical properties of silica nanoparticles. Mater. Chem. Phys. 2009 114 1 328 332 10.1016/j.matchemphys.2008.09.068
    [Google Scholar]
  52. Itoh N. Kimoto A. Yamamoto E. Higashi T. Santa T. Funatsu T. Kato M. High performance liquid chromatography analysis of 100-nm liposomal nanoparticles using polymer-coated, silica monolithic columns with aqueous mobile phase. J. Chromatogr. A 2017 1484 34 40 10.1016/j.chroma.2016.12.080 28089273
    [Google Scholar]
  53. Martins L.G. khalil N.M. Mainardes R.M. Application of a validated HPLC-PDA method for the determination of melatonin content and its release from poly(lactic acid) nanoparticles. J. Pharm. Anal. 2017 7 6 388 393 10.1016/j.jpha.2017.05.007 29404064
    [Google Scholar]
  54. Baroli B. Penetration of nanoparticles and nanomaterials in the skin: Fiction or reality? J. Pharm. Sci. 2010 99 1 21 50 10.1002/jps.21817 19670463
    [Google Scholar]
  55. Jenning V. Schäfer-Korting M. Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J. Control. Release 2000 66 2-3 115 126 10.1016/S0168‑3659(99)00223‑0 10742573
    [Google Scholar]
  56. Tipton J.D. Mass spectrometry for structural proteomic analysis of recombinant human sialyltransferase and identification of nanoparticle harvested oligonucleotides. University of Florida 2005
    [Google Scholar]
  57. Lv Y. He H. Qi J. Lu Y. Zhao W. Dong X. Wu W. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int. J. Pharm. 2018 547 1-2 395 403 10.1016/j.ijpharm.2018.06.025 29894757
    [Google Scholar]
  58. Vauthier C. Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm. Res. 2009 26 5 1025 1058 10.1007/s11095‑008‑9800‑3 19107579
    [Google Scholar]
  59. Hoseini B. Jaafari M.R. Golabpour A. Momtazi-Borojeni A.A. Eslami S. Optimizing nanoliposomal formulations: Assessing factors affecting entrapment efficiency of curcumin-loaded liposomes using machine learning. Int. J. Pharm. 2023 646 123414 10.1016/j.ijpharm.2023.123414 37714314
    [Google Scholar]
  60. Krüger G.J. Diffusion in thermotropic liquid crystals. Phys. Rep. 1982 82 4 229 269 10.1016/0370‑1573(82)90025‑4
    [Google Scholar]
  61. Lindblom G. Orädd G. NMR Studies of translational diffusion in lyotropic liquid crystals and lipid membranes. Prog. Nucl. Magn. Reson. Spectrosc. 1994 26 483 515 10.1016/0079‑6565(94)80014‑6
    [Google Scholar]
  62. Mukherjee S. Ray S. Thakur R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009 71 4 349 358 10.4103/0250‑474X.57282 20502539
    [Google Scholar]
  63. Alam T. Quality by design based development of nanostructured lipid carrier: a risk based approach. 10.37349/emed.2022.00118
    [Google Scholar]
  64. Walsh M. Srinathan S.K. McAuley D.F. Mrkobrada M. Levine O. Ribic C. Molnar A.O. Dattani N.D. Burke A. Guyatt G. Thabane L. Walter S.D. Pogue J. Devereaux P.J. The statistical significance of randomized controlled trial results is frequently fragile: a case for a Fragility Index. J. Clin. Epidemiol. 2014 67 6 622 628 10.1016/j.jclinepi.2013.10.019 24508144
    [Google Scholar]
  65. Tichon J. Response surface methodology for split-plot designs with categorical factors.
    [Google Scholar]
  66. Badie H. Abbas H. Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: preparation, charachterization, and ex vivo permeation. Drug Dev. Ind. Pharm. 2018 44 12 2013 2025 10.1080/03639045.2018.1508220 30095009
    [Google Scholar]
  67. Iqubal M.K. Iqubal A. Imtiyaz K. Rizvi M.M.A. Gupta M.M. Ali J. Baboota S. Combinatorial lipid-nanosystem for dermal delivery of 5-fluorouracil and resveratrol against skin cancer: Delineation of improved dermatokinetics and epidermal drug deposition enhancement analysis. Eur. J. Pharm. Biopharm. 2021 163 223 239 10.1016/j.ejpb.2021.04.007 33864904
    [Google Scholar]
  68. Vendruscolo CW de Oliveira BE Leonardi GR Micro and Nanostructured Drug Release Systems for Skin Cancer Treatment. InBiotechnology Applied to Inflammatory Diseases: Cellular Mechanisms and Nanomedicine Springer Nature Singapore Singapore 2023 35 322 10.1007/978‑981‑19‑8342‑9_14
    [Google Scholar]
  69. Awad M. Barnes T.J. Thomas N. Joyce P. Prestidge C.A. Gallium protoporphyrin liquid crystalline lipid nanoparticles: a third-generation photosensitizer against Pseudomonas aeruginosa biofilms. Pharmaceutics 2022 14 10 2124 10.3390/pharmaceutics14102124 36297559
    [Google Scholar]
  70. Petrilli R. Praca F. Carollo A.R. Medina W. Oliveira K.T. Fantini M. Neves M.G. Cavaleiro J. Serra O. Iamamoto Y. Bentley M.V. Nanoparticles of lyotropic liquid crystals: A novel strategy for the topical delivery of a chlorin derivative for photodynamic therapy of skin cancer. Curr. Nanosci. 2013 9 4 434 441 10.2174/1573413711309040003
    [Google Scholar]
  71. Tan Y.N. Li Y.P. Huang J.D. Luo M. Li S.S. Lee A.W.M. Hu F.Q. Guan X.Y. Thermal-sensitive lipid nanoparticles potentiate anti-PD therapy through enhancing drug penetration and T lymphocytes infiltration in metastatic tumor. Cancer Lett. 2021 522 238 254 10.1016/j.canlet.2021.09.031 34571084
    [Google Scholar]
  72. Rigon R.B. Oyafuso M.H. Fujimura A.T. Gonçalez M.L. Prado A.H. Gremião M.P.D. Chorilli M. Nanotechnology‐based drug delivery systems for melanoma antitumoral therapy: a review. BioMed Res. Int. 2015 2015 1 1 22 10.1155/2015/841817 26078967
    [Google Scholar]
  73. Sharma P. Kumar A. Agarwal T. Dey A.D. Moghaddam F.D. Rahimmanesh I.L.N.A.Z. Ghovvati M. Yousefiasl S. Borzacchiello A. Mohammadi A. Yella V.R. Moradi O. Sharifi E. Nucleic acid-based therapeutics for dermal wound healing. Int. J. Biol. Macromol. 2022 220 920 933 10.1016/j.ijbiomac.2022.08.099 35987365
    [Google Scholar]
  74. Obeid MA Aljabali AA Rezigue M Amawi H Alyamani H Abdeljaber SN Ferro VA Use of nanoparticles in delivery of nucleic acids for melanoma treatment. Melanoma: Methods and Protocols 2021 591 620 10.1007/978‑1‑0716‑1205‑7_41
    [Google Scholar]
  75. de Moura L.D. Ribeiro L.N.M. de Carvalho F.V. Rodrigues da Silva G.H. Lima Fernandes P.C. Brunetto S.Q. Ramos C.D. Velloso L.A. de Araújo D.R. de Paula E. Docetaxel and lidocaine co-loaded (NLC-in-hydrogel) hybrid system designed for the treatment of melanoma. Pharmaceutics 2021 13 10 1552 10.3390/pharmaceutics13101552 34683846
    [Google Scholar]
  76. Flieger J. Raszewska-Famielec M. Radzikowska-Büchner E. Flieger W. Skin Protection by Carotenoid Pigments. Int. J. Mol. Sci. 2024 25 3 1431 10.3390/ijms25031431 38338710
    [Google Scholar]
  77. Victorelli F.D. Lutz-Bueno V. Santos K.P. Wu D. Sturla S.J. Mezzenga R. Cubosomes functionalized with antibodies as a potential strategy for the treatment of HER2-positive breast cancer. J. Colloid Interface Sci. 2024 673 291 300 10.1016/j.jcis.2024.06.091 38875795
    [Google Scholar]
  78. Zhai J. Fong C. Tran N. Drummond C.J. Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano 2019 13 6 6178 6206 10.1021/acsnano.8b07961 31082192
    [Google Scholar]
  79. Wang C Xu M Fan Q Li C Zhou X Therapeutic potential of exosome‐based personalized delivery platform in chronic inflammatory diseases. Asian journal of pharmaceutical sciences 2023 18 1 100772 10.1016/j.ajps.2022.100772
    [Google Scholar]
  80. Rezakhani L. Rahmati S. Ghasemi S. Alizadeh M. Alizadeh A. A comparative study of the effects of crab derived exosomes and doxorubicin in 2 & 3-dimensional in vivo models of breast cancer. Chem. Phys. Lipids 2022 243 105179 10.1016/j.chemphyslip.2022.105179 35150707
    [Google Scholar]
  81. Rezakhani L. Alizadeh M. Sharifi E. Soleimannejad M. Alizadeh A. Isolation and characterization of crab haemolymph exosomes and its effects on breast cancer cells (4T1). Cell J. 2021 23 6 658 664 34939759
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385312450240816055942
Loading
/content/journals/pnt/10.2174/0122117385312450240816055942
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test