Skip to content
2000
image of Nanocurcumin-containing Spongy Membrane for Improving the Quality of Hard and Soft Tissues in the Extracted Tooth Area: A Double-Blind Split-Mouth Clinical Trial Study

Abstract

Background

The assessment of the hard and soft tissue conditions is part of the overall dental treatments.

Aim

In this study, we investigated nano curcumin-containing membranes to improve the quality of the hard and soft tissues in the extracted tooth area as a clinical trial study.

Methods

After the patient was selected following the inclusion and exclusion criteria, the patients who had teeth extracted from both sides of the mouth (split mouth) on the side of the intervention received a membrane containing nanocurcumin, and on the control side, no material was placed in the socket. For data analysis, SPSS software version 24 was used. A significance threshold was deemed to be less than 0.05 in terms of probability.

Results

Two months after tooth extraction, during implant placement, the average gingival thickness on the “intervention side,” was 3.1±0.34 mm, while the average gingival thickness on the “control side” was 2.6±0.42 mm. Then, the membrane could improve the quality of soft tissue (P< 0.0001). As another outcome, the application of this membrane did not significantly affect bone repair in these patients compared to the control group (P = 0.72). However, the histology data revealed that the newly generated bone of the intervention group was seen close to the membrane, demonstrating the osteoconductive ability of the membrane.

Conclusion

Based on the obtained results, the newly developed membrane can be used to improve the quality of hard and soft tissues in the extracted tooth area. Nonetheless, more efforts in nanocurcumin dosage adjustment are needed for hard tissue regeneration in future studies.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385311052240820114853
2024-08-30
2025-01-10
Loading full text...

Full text loading...

References

  1. Xue N. Ding X. Huang R. Jiang R. Huang H. Pan X. Min W. Chen J. Duan J.A. Liu P. Wang Y. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals 2022 15 7 879 10.3390/ph15070879 35890177
    [Google Scholar]
  2. Rodríguez-Merchán E.C. Bone healing materials in the treatment of recalcitrant nonunions and bone defects. Int. J. Mol. Sci. 2022 23 6 3352 10.3390/ijms23063352 35328773
    [Google Scholar]
  3. Jia W. Liu L. Li M. Zhou Y. Zhou H. Weng H. Gu G. Xiao M. Chen Z. Construction of enzyme-laden vascular scaffolds based on hyaluronic acid oligosaccharides-modified collagen nanofibers for antithrombosis and in-situ endothelialization of tissue-engineered blood vessels. Acta Biomater. 2022 153 287 298 10.1016/j.actbio.2022.09.041 36155095
    [Google Scholar]
  4. Guralnick W.C. Berg L. Gelfoam in oral surgery. Oral Surg. Oral Med. Oral Pathol. 1948 1 7 632 639 10.1016/0030‑4220(48)90337‑5 18869494
    [Google Scholar]
  5. Kim J.-C. Minor complications after mandibular third molar surgery: Type, incidence, and possible prevention. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2006 102 2 e4 11 10.1016/j.tripleo.2005.10.050
    [Google Scholar]
  6. Noroozi A.-R. Philbert R.F.J.O.S. Modern concepts in understanding and management of the “dry socket” syndrome: comprehensive review of the literature. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009 107 1 30 35
    [Google Scholar]
  7. Merlin A.R.S. Selvarasu K. Vijaykumar J. Analysis of patient compliance regarding post operative review following dental extraction-an institutional study. Int. J. Early Child. Spec. Educ. 2022 14 02 3824 3830
    [Google Scholar]
  8. Shahi S. Özcan M. Maleki Dizaj S. Sharifi S. Al-Haj Husain N. Eftekhari A. Ahmadian E. A review on potential toxicity of dental material and screening their biocompatibility. Toxicol. Mech. Methods 2019 29 5 368 377 10.1080/15376516.2019.1566424 30642212
    [Google Scholar]
  9. Ghavimi M. The effectiveness of gelatin resorbable sponge (Gelatamp) in dry socket prevention. Med. J. Tabriz Uni. Med. Sci. Health Serv. 2013 35 1 64 67
    [Google Scholar]
  10. Ghavimi M.A. Antimicrobial effects of nanocurcumin gel on reducing the microbial count of gingival fluids of implant‒abutment interface: A clinical study. J. Adv. Periodontol. Implant Dent. 2022 14 2 114 118 10.34172/japid.2022.014
    [Google Scholar]
  11. Mahmoudi A. Efficacy of a new hemostatic dental sponge in controlling bleeding, pain, and dry socket following mandibular posterior teeth extraction-a split-mouth randomized double-blind clinical trial. J. Clin. Med. 2023 12 14 4578
    [Google Scholar]
  12. Sharifi S. A biodegradable flexible micro/nano-structured porous hemostatic dental sponge. Nanomaterials 2022 12 19 3436
    [Google Scholar]
  13. Cirano F. Effect of curcumin on bone tissue in the diabetic rat: Repair of peri-implant and critical-sized defects. Int. J. Oral Maxillofac. Surg. 2018 47 11 1495 1503 10.1016/j.ijom.2018.04.018
    [Google Scholar]
  14. Johri S. Verma P. Tikku A.P. Bains R. Kohli N. Effect of amniotic membrane and platelet‐rich fibrin membrane on bone healing post endodontic surgery: An ultrasonographic, randomized controlled study. J. Tissue Eng. Regen. Med. 2022 16 12 1208 1222 10.1002/term.3362 36401577
    [Google Scholar]
  15. Jalota S. Bhaduri S.B. Tas A.C. Using a synthetic body fluid (SBF) solution of 27 mM HCO3− to make bone substitutes more osteointegrative. Mater. Sci. Eng. C 2008 28 1 129 140 10.1016/j.msec.2007.10.058
    [Google Scholar]
  16. Shahi S. Dehghani F. Abdolahinia E.D. Sharifi S. Ahmadian E. Gajdács M. Kárpáti K. Dizaj S.M. Eftekhari A. Kavetskyy T. Effect of gelatinous spongy scaffold containing nano-hydroxyapatite on the induction of odontogenic activity of dental pulp stem cells. J. King Saud Univ. Sci. 2022 34 8 102340 10.1016/j.jksus.2022.102340
    [Google Scholar]
  17. Shang W. Zhao L.J. Dong X.L. Zhao Z.M. Li J. Zhang B.B. Cai H. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol. Med. Rep. 2016 14 4 3620 3626 10.3892/mmr.2016.5674 27572279
    [Google Scholar]
  18. Sharifi S. Zaheri Khosroshahi A. Maleki Dizaj S. Rezaei Y. Preparation, physicochemical assessment and the antimicrobial action of hydroxyapatite–gelatin/curcumin nanofibrous composites as a dental biomaterial. Biomimetics 2021 7 1 4 10.3390/biomimetics7010004 35076470
    [Google Scholar]
  19. Negahdari R. Antibacterial effect of nanocurcumin inside the implant fixture: An in vitro study. Clin. Exp. Dent. Res. 2021 7 2 163 169 10.1002/cre2.348
    [Google Scholar]
  20. Singhal P. Ultra low density and highly crosslinked biocompatible shape memory polyurethane foams. J. Polym. Sci. Polym. Phys. Ed. 2012 31 5 299 300
    [Google Scholar]
  21. Rana D. Mandal B. Bhattacharyya S.J.M. Analogue calorimetric studies of blends of poly (vinyl ester)s and polyacrylates. Macromolecules 1996 29 5 1579 1583
    [Google Scholar]
  22. Rana D. Mandal B. Bhattacharyya S.J.P. Analogue calorimetry of polymer blends: Poly (styrene-co-acrylonitrile) and poly (phenyl acrylate) or poly (vinyl benzoate). Polymer 1996 37 12 2439 2443
    [Google Scholar]
  23. Rana D. Mandal B. Bhattacharyya S.J.P. Miscibility and phase diagrams of poly (phenyl acrylate) and poly (styrene-co-acrylonitrile) blends. Polymer 1993 34 7 1454 1459
    [Google Scholar]
  24. Gallyamov M. Vapor-induced spreading dynamics of adsorbed linear and brush-like macromolecules as observed by environmental SFM: Polymer chain statistics and scaling exponents. J. Polym. Sci. Polym. Phys. Ed.. 2007 26 6 395 397
    [Google Scholar]
  25. Wang F. Gelatin/chitosan films incorporated with curcumin based on photodynamic inactivation technology for antibacterial food packaging. Polymers 2022 14 8 1600
    [Google Scholar]
  26. Rashid N. Khalid S.H. Ullah Khan I. Chauhdary Z. Mahmood H. Saleem A. Umair M. Asghar S. Curcumin-loaded bioactive polymer composite film of pva/gelatin/tannic acid downregulates the pro-inflammatory cytokines to expedite healing of full-thickness wounds. ACS Omega 2023 8 8 7575 7586 10.1021/acsomega.2c07018 36872957
    [Google Scholar]
  27. Hathout R.M. Metwally A.A. Woodman T.J. Hardy J.G. Prediction of drug loading in the gelatin matrix using computational methods. ACS Omega 2020 5 3 1549 1556 10.1021/acsomega.9b03487 32010828
    [Google Scholar]
  28. Thakur G. Mitra A. Rousseau D. Basak A. Sarkar S. Pal K. Crosslinking of gelatin-based drug carriers by genipin induces changes in drug kinetic profiles in vitro. J. Mater. Sci. Mater. Med. 2011 22 1 115 123 10.1007/s10856‑010‑4185‑3 21107660
    [Google Scholar]
  29. Masullo F. Beldengrün Y. Miras J. Mackie A.D. Esquena J. Avalos J.B. Phase behavior of gelatin/maltodextrin aqueous mixtures studied from a combined experimental and theoretical approach. Fluid Phase Equilib. 2020 524 112675 10.1016/j.fluid.2020.112675
    [Google Scholar]
  30. Vaibhav V. Sinha A. Bolisetty D. Verma A. Kumar K. Singh S. Osseointegration of dental implants in ridges with insufficient bones using different membranes for guided bone regeneration. J. Pharm. Bioallied Sci. 2021 13 Suppl. 1 S225 S228 10.4103/jpbs.JPBS_696_20 34447081
    [Google Scholar]
  31. Fan D. Lu J. Yu N. Xie Y. Zhen L. Curcumin prevents diabetic osteoporosis through promoting osteogenesis and angiogenesis coupling via NF-κB signaling. Evid. Based Complement. Alternat. Med. 2022 2022 1 13 10.1155/2022/4974343 36387354
    [Google Scholar]
  32. Maleki Dizaj S. Torab A. Kouhkani S. Sharifi S. Negahdari R. Bohlouli S. Fattahi S. Salatin S. Gelatin-curcumin nanocomposites as a coating for implant healing abutment: In vitro stability investigation. Clin Pract 2023 13 1 88 101 10.3390/clinpract13010009
    [Google Scholar]
  33. Negahdari R. Sharifi S. Ghavimi MA. Memar MY. Khaneshi B. Maleki Dizaj S. Eftekhari A. Cucchiarini M. Curcumin nanocrystals: Production, physicochemical assessment, and in vitro evaluation of the antimicrobial effects against bacterial loading of the implant fixture. Appl Sci. 2020 10 23 8356 10.3390/app10238356
    [Google Scholar]
  34. Tatapudi R. Abdul Samad SK. Manyam R. Dasari D. Lakshmi RV. Efficacy of curcumin in the treatment of denture stomatitis: A randomized double-blind study. J Oral Maxillofac Pathol 2021 25 2 286 291
    [Google Scholar]
  35. Hu Q. Luo Y. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. Int. J. Biol. Macromol. 2021 179 125 135 10.1016/j.ijbiomac.2021.02.216 33667554
    [Google Scholar]
  36. Zhou X. Park S.H. Mao H. Isoshima T. Wang Y. Ito Y. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement. Int. J. Nanomedicine 2015 10 5597 5607 26366080
    [Google Scholar]
  37. Rujirachotiwat A. Suttamanatwong S. Curcumin promotes collagen type I, keratinocyte growth factor-1, and epidermal growth factor receptor expressions in the in vitro wound healing model of human gingival fibroblasts. Eur. J. Dent. 2021 15 1 063 070 10.1055/s‑0040‑1715781 33003239
    [Google Scholar]
  38. Momin M. Kurhade S. Khanekar P. Mhatre S. Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing. J. Wound Care 2016 25 6 364 372 10.12968/jowc.2016.25.6.364 27286671
    [Google Scholar]
  39. Safali S. Aydin B.K. Nayman A. Ugurluoglu C. Effect of curcumin on bone healing: An experimental study in a rat model of femur fracture. Injury 2019 50 11 1915 1920 10.1016/j.injury.2019.09.002 31506168
    [Google Scholar]
  40. Yang Q. Leong S.A. Chan K.P. Yuan X.L. Ng T.K. Complex effect of continuous curcumin exposure on human bone marrow‐derived mesenchymal stem cell regenerative properties through matrix metalloproteinase regulation. Basic Clin. Pharmacol. Toxicol. 2021 128 1 141 153 10.1111/bcpt.13477 32777138
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385311052240820114853
Loading
/content/journals/pnt/10.2174/0122117385311052240820114853
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test