Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

The rise in global cancer burden, notably breast cancer, emphasizes the need to address chemotherapy-induced cognitive impairment, also known as chemobrain. Although chemotherapy drugs are effective against cancer, they can trigger cognitive deficits. This has triggered the exploration of preventive strategies and novel therapeutic approaches. Nanomedicine is evolving as a promising tool to be used for the mitigation of chemobrain by overcoming the blood-brain barrier (BBB) with innovative drug delivery systems. Polymer and lipid-based nanoparticles enable targeted drug release, enhancing therapeutic effectiveness. Utilizing the intranasal route of administration may facilitate drug delivery to the central nervous system (CNS) by circumventing first-pass metabolism. Therefore, knowledge of nasal anatomy is critical for optimizing drug delivery various pathways. Despite challenges, nanoformulations exhibit the potential in enhancing brain drug delivery. Continuous research into formulation techniques and chemobrain mechanisms is vital for developing effective treatments. The intranasal administration of nanoformulations holds promise for improving therapeutic outcomes in chemobrain management. This review offers insights into potential future research directions, such as exploring novel drug combinations, investigating alternative delivery routes, or integrating emerging technologies to enhance the efficacy and safety of nanoformulations for chemobrain management.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385291482240426101519
2024-05-14
2025-01-10
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924933538338
    [Google Scholar]
  2. WefelJ.S. SaleebaA.K. BuzdarA.U. MeyersC.A. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer.Cancer2010116143348335620564075
    [Google Scholar]
  3. VardyJ.L. DhillonH.M. PondG.R. Cognitive function in patients with colorectal cancer who do and do not receive chemotherapy: A prospective, longitudinal, controlled study.J. Clin. Oncol.201533344085409226527785
    [Google Scholar]
  4. SunA. BaeK. GoreE.M. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: neurocognitive and quality-of-life analysis.J. Clin. Oncol.201129327928621135267
    [Google Scholar]
  5. AhlesT.A. SaykinA.J. FurstenbergC.T. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma.J. Clin. Oncol.200220248549311786578
    [Google Scholar]
  6. WazqarD.Y. Cognitive dysfunction and its predictors in adult patients with cancer receiving chemotherapy: A cross-sectional correlational study.J. Nurs. Res.2019276e5631517716
    [Google Scholar]
  7. LangeM. JolyF. VardyJ. Cancer-related cognitive impairment: An update on state of the art, detection, and management strategies in cancer survivors.Ann. Oncol.201930121925194031617564
    [Google Scholar]
  8. BrownT. SykesD. AllenA.R. Implications of breast cancer chemotherapy-induced inflammation on the gut, liver, and central nervous system.Biomedicines20219211533668580
    [Google Scholar]
  9. Brantley-FinleyC. LyleC.S. DuL. The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide.Biochem. Pharmacol.200366345946912907245
    [Google Scholar]
  10. RenX. BorieroD. ChaiswingL. BondadaS. St ClairD.K. ButterfieldD.A. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”), a condition that significantly impairs the quality of life of many cancer survivors.Biochim. Biophys. Acta Mol. Basis Dis.2019186561088109730759363
    [Google Scholar]
  11. WaksA.G. WinerE.P. Breast cancer treatment: A review.JAMA2019321328830030667505
    [Google Scholar]
  12. ThornC.F. OshiroC. MarshS. Doxorubicin pathways: pharmacodynamics and adverse effects.Pharmacogenet. Genomics201121744044621048526
    [Google Scholar]
  13. EideS. FengZ.P. Doxorubicin chemotherapy-induced “chemo-brain”: Meta-analysis.Eur. J. Pharmacol.202088117307832505665
    [Google Scholar]
  14. VoelckerG. The mechanism of action of cyclophosphamide and its consequences for the development of a new generation of oxazaphosphorine cytostatics.Sci. Pharm.202088442
    [Google Scholar]
  15. UenoM. KatayamaK. YamauchiH. NakayamaH. DoiK. Cell cycle progression is required for nuclear migration of neural progenitor cells.Brain Res.200610881576716650835
    [Google Scholar]
  16. SubramaniamS. SubramaniamS. Shyamala DeviC.S. Erythrocyte antioxidant enzyme activity in CMF treated breast cancer patients.Cancer Biochem. Biophys.19941431771827728738
    [Google Scholar]
  17. LongleyD.B. HarkinD.P. JohnstonP.G. 5-fluorouracil: Mechanisms of action and clinical strategies.Nat. Rev. Cancer20033533033812724731
    [Google Scholar]
  18. WigmoreP.M. MustafaS. El-BeltagyM. LyonsL. UmkaJ. BennettG. Effects of 5-FU.Adv. Exp. Med. Biol.2010678157164
    [Google Scholar]
  19. KoźmińskiP. HalikP.K. ChesoriR. GniazdowskaE. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers.Int. J. Mol. Sci.20202110348332423175
    [Google Scholar]
  20. BreedveldP. ZelcerN. PluimD. Mechanism of the pharmacokinetic interaction between methotrexate and benzimidazoles: Potential role for breast cancer resistance protein in clinical drug-drug interactions.Cancer Res.200464165804581115313923
    [Google Scholar]
  21. AngelovL. DoolittleN.D. KraemerD.F. Blood-brain barrier disruption and intra-arterial methotrexate-based therapy for newly diagnosed primary CNS lymphoma: A multi-institutional experience.J. Clin. Oncol.200927213503350919451444
    [Google Scholar]
  22. ComandoneA. PasseraR. BoglioneA. TaginiV. FerrariS. CattelL. High dose methotrexate in adult patients with osteosarcoma: Clinical and pharmacokinetic results.Acta Oncol.200544440641116120550
    [Google Scholar]
  23. DasariS. TchounwouP.B. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437825058905
    [Google Scholar]
  24. KilariD. GuancialE. KimE.S. Role of copper transporters in platinum resistance.World J. Clin. Oncol.20167110611326862494
    [Google Scholar]
  25. NakagawaH. FujitaT. KuboS. Difference in CDDP penetration into CSF between selective intraarterial chemotherapy in patients with malignant glioma and intravenous or intracarotid administration in patients with metastatic brain tumor.Cancer Chemother. Pharmacol.19963743173268548876
    [Google Scholar]
  26. ArangoD. WilsonA.J. ShiQ. Molecular mechanisms of action and prediction of response to oxaliplatin in colorectal cancer cells.Br. J. Cancer200491111931194615545975
    [Google Scholar]
  27. BrancaJ.J.V. MarescaM. MorucciG. Oxaliplatin-induced blood brain barrier loosening: A new point of view on chemotherapy-induced neurotoxicity.Oncotarget2018934234262343829805744
    [Google Scholar]
  28. JaworskiJ. KapiteinL.C. GouveiaS.M. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity.Neuron20096118510019146815
    [Google Scholar]
  29. RoglioI. BianchiR. CamozziF. Docetaxel-induced peripheral neuropathy: Protective effects of dihydroprogesterone and progesterone in an experimental model.J. Peripher. Nerv. Syst.2009141364419335538
    [Google Scholar]
  30. JohnJ. KinraM. MudgalJ. ViswanathaG.L. NandakumarK. Animal models of chemotherapy-induced cognitive decline in preclinical drug development.Psychopharmacology2021238113025305334643772
    [Google Scholar]
  31. ZimmerA.S. SteinbergS.M. SmartD.D. GilbertM.R. ArmstrongT.S. BurtonE. Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases.Future Oncol.20201614899909
    [Google Scholar]
  32. ZhangJ. StevensM.F. BradshawT.D. Temozolomide: Mechanisms of action, repair and resistance.Curr. Mol. Pharmacol.20125110211422122467
    [Google Scholar]
  33. BirdT.G. WhittakerS. WainE.M. ChildF. MorrisS.L. Temozolomide for central nervous system involvement in mycosis fungoides.Int. J. Dermatol.201655775175626276786
    [Google Scholar]
  34. DijkshoornA.B.C. van StralenH.E. SlootsM. SchagenS.B. Visser-MeilyJ.M.A. SchepersV.P.M. Prevalence of cognitive impairment and change in patients with breast cancer: A systematic review of longitudinal studies.Psychooncology202130563564833533166
    [Google Scholar]
  35. LvL. MaoS. DongH. HuP. DongR. Pathogenesis, assessments, and management of chemotherapy-related cognitive impairment (CRCI): An updated literature review.J. Oncol.20202020394243932684930
    [Google Scholar]
  36. MounierN.M. Abdel-MagedA.E.S. WahdanS.A. GadA.M. AzabS.S. Chemotherapy-induced cognitive impairment (CICI): An overview of etiology and pathogenesis.Life Sci.202025811807132673664
    [Google Scholar]
  37. DietrichJ. PrustM. KaiserJ. Chemotherapy, cognitive impairment and hippocampal toxicity.Neuroscience201530922423226086545
    [Google Scholar]
  38. AhlesT.A. SaykinA.J. Breast cancer chemotherapy-related cognitive dysfunction.Clin. Breast Cancer20023Suppl. 3S84S9012533268
    [Google Scholar]
  39. AhlesT.A. SaykinA.J. Candidate mechanisms for chemotherapy-induced cognitive changes.Nat. Rev. Cancer20077319220117318212
    [Google Scholar]
  40. OngnokB. ChattipakornN. ChattipakornS.C. Doxorubicin and cisplatin induced cognitive impairment: The possible mechanisms and interventions.Exp. Neurol.202032411311831756316
    [Google Scholar]
  41. AlbertiP. SalvalaggioA. ArgyriouA.A. Neurological complications of conventional and novel anticancer treatments.Cancers20221424608836551575
    [Google Scholar]
  42. LawrenceL. Lifting the fog on “Chemo Brain.”.2018Available from: https://www.curetoday.com/view/lifting-the-fog-on-chemo-brain
    [Google Scholar]
  43. RatanR.R. Targeting oxidative distress to treat chemobrain: Go with the choroid plexus-cerebrospinal fluid flow.Neuron2022110203219322236265438
    [Google Scholar]
  44. KarschniaP. ParsonsM.W. DietrichJ. Pharmacologic management of cognitive impairment induced by cancer therapy.Lancet Oncol.2019202e92e10230723041
    [Google Scholar]
  45. WinocurG. JohnstonI. CastelH. Chemotherapy and cognition: International cognition and cancer task force recommendations for harmonising preclinical research.Cancer Treat. Rev.201869728329909223
    [Google Scholar]
  46. ShakerF.H. El-DeranyM.O. WahdanS.A. El-DemerdashE. El-MesallamyH.O. Berberine ameliorates doxorubicin-induced cognitive impairment (chemobrain) in rats.Life Sci.202126911907833460662
    [Google Scholar]
  47. ZakriaM. AhmadN. Al KuryL.T. Melatonin rescues the mice brain against cisplatin-induced neurodegeneration, an insight into antioxidant and anti-inflammatory effects.Neurotoxicology20218711034428482
    [Google Scholar]
  48. MorettiR.L. DiasE.N. KielS.G. Behavioral and morphological effects of resveratrol and curcumin in rats submitted to doxorubicin-induced cognitive impairment.Res. Vet. Sci.202114024225034536813
    [Google Scholar]
  49. WangC. ZhaoY. WangL. C-phycocyanin mitigates cognitive impairment in doxorubicin-induced chemobrain: Impact on neuroinflammation, oxidative stress, and brain mitochondrial and synaptic alterations.Neurochem. Res.202146214915833237471
    [Google Scholar]
  50. SungP-S. ChenP-W. YenC-J. Memantine protects against paclitaxel-induced cognitive impairment through modulation of neurogenesis and inflammation in mice.Cancers20211316417734439331
    [Google Scholar]
  51. HussienM. YousefM.I. Impact of ginseng on neurotoxicity induced by cisplatin in rats.Environ. Sci. Pollut. Res. Int.20222941620426205434591247
    [Google Scholar]
  52. RamalingayyaG. NayakP. ShenoyR. MallikS. GourishettiK. HussainS. Naringin ameliorates doxorubicin-induced neurotoxicity In vitro and cognitive dysfunction In vivo.Pharmacogn. Mag.20181455197
    [Google Scholar]
  53. CherukuS.P. RamalingayyaG.V. ChamallamudiM.R. Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats.Cytotechnology201870124525928900743
    [Google Scholar]
  54. ChaisawangP. SirichoatA. ChaijaroonkhanarakW. Asiatic acid protects against cognitive deficits and reductions in cell proliferation and survival in the rat hippocampus caused by 5-fluorouracil chemotherapy.PLoS One2017127e018065028700628
    [Google Scholar]
  55. RamalingayyaG.V. CherukuS.P. NayakP.G. Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats.Drug Des. Devel. Ther.2017111011102628408800
    [Google Scholar]
  56. PanossianA. SeoE-J. KlauckS.M. EfferthT. Adaptogens in chemobrain (part IV): adaptogenic plants prevent the chemotherapeutics-induced imbalance of redox homeostasis by modulation of expression of genes encoding Nrf2-mediated signaling proteins and antioxidant, metabolizing, detoxifying enzymes i.Longhua Chin. Med.202034
    [Google Scholar]
  57. PalmerA.C.S. ZorteaM. SouzaA. Clinical impact of melatonin on breast cancer patients undergoing chemotherapy; effects on cognition, sleep and depressive symptoms: A randomized, double-blind, placebo-controlled trial.PLoS One2020154e023137910.1371/journal.pone.023137932302347
    [Google Scholar]
  58. BrownP.D. PughS. LaackN.N. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial.Neuro-oncol.201315101429143723956241
    [Google Scholar]
  59. BartonD.L. LiuH. DakhilS.R. Wisconsin Ginseng (Panax quinquefolius) to improve cancer-related fatigue: A randomized, double-blind trial, N07C2.J. Natl. Cancer Inst.2013105161230123823853057
    [Google Scholar]
  60. YennurajalingamS. TannirN.M. WilliamsJ.L. A double-blind, randomized, placebo-controlled trial of panax ginseng for cancer-related fatigue in patients with advanced cancer.J. Natl. Compr. Canc. Netw.20171591111112028874596
    [Google Scholar]
  61. BartonD.L. SooriG.S. BauerB.A. Pilot study of Panax quinquefolius (American ginseng) to improve cancer-related fatigue: a randomized, double-blind, dose-finding evaluation: NCCTG trial N03CA.Support. Care Cancer201018217918719415341
    [Google Scholar]
  62. FergusonR.J. Telehealth and memory study (TAMS).2020Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04586530
    [Google Scholar]
  63. BehlD. Carol parise. Ashwagandha for Cognitive Dysfunction.2019Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04092647
    [Google Scholar]
  64. VegaJ. nCCR for chemotherapy related cognitive impairment randomized study.2022Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05283629
  65. YanS. Electroacupuncture for chemotherapy-related cognitive impairment.2023Available from: https://ichgcp.net/clinical-trials-registry/NCT05941598
    [Google Scholar]
  66. GrigoreC. Telerehabilitation cognitive impairments following chemotherapy usability study (TCIFCU).2021Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04839588
    [Google Scholar]
  67. PaulA. Nicotinic treatment of post-chemotherapy subjective cognitive impairment: A pilot study.2014Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02312934
    [Google Scholar]
  68. NewhouseP. Neuroplasticity-based cognitive remediation for chemotherapy-related cognitive impairment.2020Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04230863
    [Google Scholar]
  69. YuanZ. GM1 prophylaxis for post-chemotherapy cognitive impairment in patients with early operable breast cancer.2022Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05239663
    [Google Scholar]
  70. FlöelA. Cognitive training and brain stimulation in women with post-chemotherapy cognitive impairment (NeuroMod-PCCI).2021Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04817566
    [Google Scholar]
  71. BotaD. Effect of NAC on preventing chemo-related cognitive impairments in ovarian ca pts treated W/PBT.2020Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04520139
    [Google Scholar]
  72. Zhang-JinZ.H.A.N.G. Acupuncture prevents chemobrain in breast cancer patients.2015Available from: https://classic.clinicaltrials.gov/ct2/show/NCT02457039
    [Google Scholar]
  73. CharlesE. The activity intervention for chemobrain (TACTIC).2007Available from: https://classic.clinicaltrials.gov/ct2/show/NCT00495703
    [Google Scholar]
  74. González-SantosÁ. Lopez-GarzonM. Sánchez-SaladoC. A telehealth-based cognitive-adaptive training (e-otcat) to prevent cancer and chemotherapy-related cognitive impairment in women with breast cancer: Protocol for a randomized controlled trial.Int. J. Environ. Res. Public Health20221912714735742400
    [Google Scholar]
  75. El-attaA.A.A.A. Role of silymarin in chemotherapy toxicity and cognition improvement in breast cancer patients.2022Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05595109
    [Google Scholar]
  76. RamchandranK. Accelerated neuromodulation to alleviate cognitive deficits due to cancer therapy.2022Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04966520
    [Google Scholar]
  77. GongY. Chinese acupuncture for chemobrain in elderly cancer patients.2023Available from: https://ichgcp.net/clinical-trials-registry/NCT05876988
    [Google Scholar]
  78. JoseL. Cognitive stimulation and chemobrain. An innovative intervention for cancer survivors.2022Available from: https://classic.clinicaltrials.gov/ct2/show/NCT05409248
    [Google Scholar]
  79. GrigoreC. Telerehabilitation cognitive impairments following chemotherapy feasibility study (TCIFCF).2021Available from: https://classic.clinicaltrials.gov/ct2/show/NCT04972019
    [Google Scholar]
  80. HenryW. Computer-based training in patients with post-chemotherapy cognitive impairment.2006Available from: https://classic.clinicaltrials.gov/ct2/show/NCT00387062
    [Google Scholar]
  81. BartonD. EGb761 in maintaining mental clarity in women receiving chemotherapy for newly diagnosed breast cancer.2003Available from: https://classic.clinicaltrials.gov/ct2/show/NCT00046891
    [Google Scholar]
  82. IslamS.U. ShehzadA. AhmedM.B. LeeY.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders.Molecules2020258192932326318
    [Google Scholar]
  83. BrightmanM.W. KayaM. Permeable endothelium and the interstitial space of brain.Cell. Mol. Neurobiol.200020211113010696505
    [Google Scholar]
  84. KabanovA.V. GendelmanH.E. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders.Prog. Polym. Sci.2007328-91054108220234846
    [Google Scholar]
  85. KanwarJ.R. SunX. PunjV. Nanoparticles in the treatment and diagnosis of neurological disorders: untamed dragon with fire power to heal.Nanomedicine20128439941421889479
    [Google Scholar]
  86. GreishK. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In: Methods in molecular biology.Clifton, NJ20102537
    [Google Scholar]
  87. IllumL. Nasal drug delivery--possibilities, problems and solutions.J. Control. Release2003871-318719812618035
    [Google Scholar]
  88. KhanA.R. LiuM. KhanM.W. ZhaiG. Progress in brain targeting drug delivery system by nasal route.J. Control. Release201726836438928887135
    [Google Scholar]
  89. Ul-IslamS. AhmedM.B. ShehzadA. Ul-IslamM. LeeY.S. Failure of chemotherapy in hepatocellular carcinoma due to impaired and dysregulated primary liver drug metabolizing enzymes and drug transport proteins: What to do?Curr. Drug Metab.2018191081982929807513
    [Google Scholar]
  90. VermaP. ThakurA.S. DeshmukhK. JhaD.A.K. VermaS. Routes of drug administration.Int J Pharm Stud Res2010115459
    [Google Scholar]
  91. DjupeslandP.G. Nasal drug delivery devices: Characteristics and performance in a clinical perspective-a review.Drug Deliv. Transl. Res.201331426223316447
    [Google Scholar]
  92. PardridgeW.M. Drug transport across the blood-brain barrier.J. Cereb. Blood Flow Metab.201232111959197222929442
    [Google Scholar]
  93. TürkerS. OnurE. ÓzerY. Nasal route and drug delivery systems.Pharm. World Sci.200426313714215230360
    [Google Scholar]
  94. TaiJ. HanM. LeeD. ParkI. LeeS.H. KimT.H. Different methods and formulations of drugs and vaccines for nasal administration.Pharmaceutics2022119
    [Google Scholar]
  95. MisraA. KherG. Drug delivery systems from nose to brain.Curr. Pharm. Biotechnol.201213122355237923016642
    [Google Scholar]
  96. LeopoldD.A. The relationship between nasal anatomy and human olfaction.Laryngoscope19889811123212383185078
    [Google Scholar]
  97. BrandG. Olfactory/trigeminal interactions in nasal chemoreception.Neurosci. Biobehav. Rev.200630790891716545453
    [Google Scholar]
  98. De LorenzoA.J. Electron microscopy of the olfactory and gustatory pathways.Ann. Otol. Rhinol. Laryngol.196069241042013814865
    [Google Scholar]
  99. JohnsonN.J. HansonL.R. FreyW.H. Trigeminal pathways deliver a low molecular weight drug from the nose to the brain and orofacial structures.Mol. Pharm.20107388489320420446
    [Google Scholar]
  100. ThorneR.G. PronkG.J. PadmanabhanV. FreyW.H.II Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration.Neuroscience2004127248149615262337
    [Google Scholar]
  101. SavaleS. MahajanH. Nose to Brain: A versatile mode of drug delivery system.Asian J Biomater Res2017311638
    [Google Scholar]
  102. MainardesR.M. UrbanM.C. CintoP.O. ChaudM.V. EvangelistaR.C. GremiãoM.P. Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery.Curr. Drug Deliv.20063327528516848729
    [Google Scholar]
  103. a LeeD. MinkoT. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier.Pharmaceutics20211312204934959331
    [Google Scholar]
  104. b HaqueS. MdS. SahniJ.K. AliJ. BabootaS. Development and evaluation of brain targeted intranasal alginate nanoparticles for treatment of depression.J. Psychiatr. Res. [Internet].2014481112
    [Google Scholar]
  105. a van WoenselM. WauthozN. RosièreR. Formulations for intranasal delivery of pharmacological agents to combat brain disease: A new opportunity to tackle GBM?Cancers2013531020104824202332
    [Google Scholar]
  106. b AlamS. MustafaG. KhanZ.I. IslamF. BhatnagarA. AhmadF. Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study.Int. J. Nanomedicine [Internet].20125705
    [Google Scholar]
  107. a PilvenyteG. RatautaiteV. BoguzaiteR. Molecularly imprinted polymers for the recognition of biomarkers of certain neurodegenerative diseases.J. Pharm. Biomed. Anal.202322811534336934618
    [Google Scholar]
  108. b UllahZ. Al-AsmariA. TariqM. FataniA. Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil.Drug Des. Devel. Ther. [Internet].2016205
    [Google Scholar]
  109. PilvenyteG. RatautaiteV. BoguzaiteR. Molecularly imprinted polymer-based electrochemical sensors for the diagnosis of infectious diseases.Biosensors202313662037366985
    [Google Scholar]
  110. FigueiredoE.C. SeabraC.L. MendesT.V. RosaM.A. PinhoC.D.L.N. de Oliveira FigueiredoD.M. Molecularly imprinted nanoparticles as drug carriers to the brain.J. Mater. Sci.202358461757817593
    [Google Scholar]
  111. LiuR. PomaA. Advances in molecularly imprinted polymers as drug delivery systems.Molecules20212612358934208380
    [Google Scholar]
  112. a PilvenyteG. RatautaiteV. BoguzaiteR. RamanaviciusA. ViterR. RamanaviciusS. Molecularly imprinted polymers for the determination of cancer biomarkers.Int. J. Mol. Sci.2023244410536835517
    [Google Scholar]
  113. b MadaneR.G. MahajanH.S. Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study.Drug Deliv. [Internet].201623413261334
    [Google Scholar]
  114. ZafarA. Awad AlsaidanO. AlruwailiN.K. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation.Int. J. Pharm.202262712223236155794
    [Google Scholar]
  115. AhmedB. RizwanullahM. MirS.R. AkhtarM.S. AminS. Development of cannabidiol nanoemulsion for direct nose to brain delivery: statistical optimization, in vitro and in vivo evaluation.Biomed. Mater.20221766500936108625
    [Google Scholar]
  116. DiedrichC. Camargo ZittlauI. Schineider MachadoC. Mucoadhesive nanoemulsion enhances brain bioavailability of luteolin after intranasal administration and induces apoptosis to SH-SY5Y neuroblastoma cells.Int. J. Pharm.202262612214236064075
    [Google Scholar]
  117. PatelM.S. MandalS.D. MandalS. FalduS. PatelJ. Nasotransmucosal delivery of curcumin-loaded mucoadhesive microemulsions for treating inflammation-related cns disorders.Turk. J. Pharm. Sci.202219556057110.4274/tjps.galenos.2021.45945
    [Google Scholar]
  118. YasirM. ZafarA. NoorullaK.M. TuraA.J. SaraU.V.S. PanjwaniD. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study.J. Drug Deliv. Sci. Technol.202275103631
    [Google Scholar]
  119. NojokiF. Ebrahimi-HosseinzadehB. Hatamian-ZarmiA. KhodagholiF. KhezriK. Design and development of chitosan-insulin-transfersomes (Transfersulin) as effective intranasal nanovesicles for the treatment of Alzheimer’s disease: In vitro, in vivo, and ex vivo evaluations.Biomed. Pharmacother.202215311345036076565
    [Google Scholar]
  120. PaillaS.R. SampathiS. JunnuthulaV. MaddukuriS. DodoalaS. DyawanapellyS. Brain-targeted intranasal delivery of zotepine microemulsion: Pharmacokinetics and pharmacodynamics.Pharmaceutics202214597835631564
    [Google Scholar]
  121. AhmadM.Z. SabriA.H.B. AnjaniQ.K. Domínguez-RoblesJ. Abdul LatipN. HamidK.A. Design and development of levodopa loaded polymeric nanoparticles for intranasal delivery.Pharmaceuticals202215337035337167
    [Google Scholar]
  122. QizilbashF.F. AshharM.U. ZafarA. Thymoquinone-enriched naringenin-loaded nanostructured lipid carrier for brain delivery via nasal route: In vitro prospect and in vivo therapeutic efficacy for the treatment of depression.Pharmaceutics202214365610.3390/pharmaceutics1403065635336030
    [Google Scholar]
  123. KatonaG. SabirF. SiposB. Development of lomustine and n-propyl gallate co-encapsulated liposomes for targeting glioblastoma multiforme via intranasal administration.Pharmaceutics202214363135336006
    [Google Scholar]
  124. ElsheikhM.A. El-FekyY.A. Al-SawahliM.M. AliM.E. FayezA.M. AbbasH. A brain-targeted approach to ameliorate memory disorders in a sporadic alzheimer’s disease mouse model via intranasal luteolin-loaded nanobilosomes.Pharmaceutics202214357635335952
    [Google Scholar]
  125. JufriM. YuwandaA. SuriniS. HarahapY. Study of valproic acid liposomes for delivery into the brain through an intranasal route.Heliyon202283e0903035284670
    [Google Scholar]
  126. Abo El-EninH.A. ElkomyM.H. NaguibI.A. Lipid nanocarriers overlaid with chitosan for brain delivery of berberine via the nasal route.Pharmaceuticals202215328135337079
    [Google Scholar]
  127. RajputA. ButaniS. Donepezil HCl liposomes: Development, characterization, cytotoxicity, and pharmacokinetic study.AAPS PharmSciTech20222327435149912
    [Google Scholar]
  128. LiX. LiS. MaC. LiT. YangL. Preparation of baicalin-loaded ligand-modified nanoparticles for nose-to-brain delivery for neuroprotection in cerebral ischemia.Drug Deliv.20222911282129835467483
    [Google Scholar]
  129. LiR. LuF. SunX. Development and in vivo evaluation of hydroxy-α-sanshool intranasal liposomes as a potential remedial treatment for alzheimer’s disease.Int. J. Nanomedicine20221718520135046654
    [Google Scholar]
  130. El TaweelM.M. Aboul-EinienM.H. KassemM.A. ElkasabgyN.A. Intranasal zolmitriptan-loaded bilosomes with extended nasal mucociliary transit time for direct nose to brain delivery.Pharmaceutics20211311182834834242
    [Google Scholar]
  131. NairS.C. VinayanK.P. MangalathillamS. Nose to brain delivery of phenytoin sodium loaded nano lipid carriers: Formulation, drug release, permeation and in vivo pharmacokinetic studies.Pharmaceutics20211310164034683933
    [Google Scholar]
  132. SainiS. SharmaT. JainA. KaurH. KatareO.P. SinghB. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence.Colloids Surf. B Biointerfaces202120511183834022704
    [Google Scholar]
  133. El-ShenawyA.A. MahmoudR.A. MahmoudE.A. MohamedM.S. Intranasal in situ gel of apixaban-loaded nanoethosomes: Preparation, optimization, and in vivo evaluation.AAPS PharmSciTech202122414733948767
    [Google Scholar]
  134. KhannaK. SharmaN. RawatS. Intranasal solid lipid nanoparticles for management of pain: A full factorial design approach, characterization & Gamma Scintigraphy.Chem. Phys. Lipids202123610506033582127
    [Google Scholar]
  135. HasanN. ImranM. KesharwaniP. Intranasal delivery of Naloxone-loaded solid lipid nanoparticles as a promising simple and non-invasive approach for the management of opioid overdose.Int. J. Pharm.202159912042833662465
    [Google Scholar]
  136. TripathiD. SonarP.K. ParasharP. ChaudharyS.K. UpadhyayS. SarafS.K. Augmented brain delivery of cinnarizine through nanostructured lipid carriers loaded in situ gel: In vitro and pharmacokinetic evaluation.Bionanoscience2021111159171
    [Google Scholar]
  137. YasirM. ChauhanI. ZafarA. VermaM. NoorullaK.M. TuraA.J. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by Box-Behnken design, in-vitro characterization and in-vivo biological evaluation.J. Drug Deliv. Sci. Technol.202161102164
    [Google Scholar]
  138. ShahP. DubeyP. VyasB. Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: Pharmacokinetic, pharmacodynamic and scintigraphy study.Artif. Cells Nanomed. Biotechnol.202149151152234151674
    [Google Scholar]
  139. WenM.M. IsmailN.I.K. NasraM.M.A. El-KamelA.H. Repurposing ibuprofen-loaded microemulsion for the management of Alzheimer’s disease: Evidence of potential intranasal brain targeting.Drug Deliv.20212811188120334121565
    [Google Scholar]
  140. DeshkarS.S. JadhavM.S. ShirolkarS.V. Development of carbamazepine nanostructured lipid carrier loaded thermosensitive gel for intranasal delivery.Adv. Pharm. Bull.202111115016233747862
    [Google Scholar]
  141. MasjediM. AzadiA. HeidariR. Mohammadi-SamaniS. Nose-to-brain delivery of sumatriptan-loaded nanostructured lipid carriers: Preparation, optimization, characterization and pharmacokinetic evaluation.J. Pharm. Pharmacol.202072101341135132579251
    [Google Scholar]
  142. ElsenosyF.M. AbdelbaryG.A. ElshafeeyA.H. ElsayedI. FaresA.R. Brain targeting of duloxetine hcl via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies.Int. J. Nanomedicine2020159517953733324051
    [Google Scholar]
  143. JazuliI. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using box-behnken design for brain targeting: In vitro and in vivo studies.J. Pharm. Sci.2019108930823090
    [Google Scholar]
  144. JojoG.M. KuppusamyG. DeA. KarriV.V.S.N.R. Formulation and optimization of intranasal nanolipid carriers of pioglitazone for the repurposing in Alzheimer’s disease using Box-Behnken design.Drug Dev. Ind. Pharm.20194571061107230922126
    [Google Scholar]
  145. RajputA.P. ButaniS.B. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization.J. Drug Deliv. Sci. Technol.201951214223
    [Google Scholar]
  146. GadhaveD.G. KokareC.R. Nanostructured lipid carriers engineered for intranasal delivery of teriflunomide in multiple sclerosis: Optimization and in vivo studies.Drug Dev. Ind. Pharm.201945583985130702966
    [Google Scholar]
  147. DeepikaD. DewanganH.K. MauryaL. SinghS. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting.J. Pharm. Sci.2019108285185930053555
    [Google Scholar]
  148. GabaB. KhanT. HaiderM.F. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model.BioMed Res. Int.20192019238256331111044
    [Google Scholar]
  149. MishraN. SharmaS. DeshmukhR. KumarA. SharmaR. Development and characterization of nasal delivery of selegiline hydrochloride loaded nanolipid carriers for the management of parkinson’s disease.Cent. Nerv. Syst. Agents Med. Chem.2019191465630474538
    [Google Scholar]
  150. GadhaveD.G. TagalpallewarA.A. KokareC.R. Agranulocytosis-protective olanzapine-loaded nanostructured lipid carriers engineered for CNS delivery: Optimization and hematological toxicity studies.AAPS PharmSciTech20192012230604305
    [Google Scholar]
  151. QureshiM. AqilM. ImamS.S. AhadA. SultanaY. Formulation and evaluation of neuroactive drug loaded chitosan nanoparticle for nose to brain delivery: In-vitro characterization and in-vivo behavior study.Curr. Drug Deliv.201916212313530317997
    [Google Scholar]
  152. YoussefN.A.H.A. KassemA.A. FaridR.M. IsmailF.A. El-MassikM.A.E. BoraieN.A. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation.Int. J. Pharm.2018548160962430033394
    [Google Scholar]
  153. AhmadN. AhmadR. NaqviA.A. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia.Artif. Cells Nanomed. Biotechnol.201846471772928604104
    [Google Scholar]
  154. AhmadN. AhmadR. AlamM.A. AhmadF.J. Quantification and brain targeting of eugenol-loaded surface modified nanoparticles through intranasal route in the treatment of cerebral ischemia.Drug Res.2018681058459529669380
    [Google Scholar]
  155. BelgamwarA. KhanS. YeoleP. Intranasal chitosan-g-HPβCD nanoparticles of efavirenz for the CNS targeting.Artif. Cells Nanomed. Biotechnol.201846237438628423949
    [Google Scholar]
  156. Pourtalebi JahromiL. Mohammadi-SamaniS. HeidariR. AzadiA. in vitro- and in vivo evaluation of methotrexate-loaded hydrogel nanoparticles intended to treat primary CNS lymphoma via intranasal administration.J. Pharm. Pharm. Sci.201821130531730053381
    [Google Scholar]
  157. Abou-TalebH.A. KhallafR.A. Abdel-AleemJ.A. Intranasal niosomes of nefopam with improved bioavailability: Preparation, optimization, and in-vivo evaluation.Drug Des. Devel. Ther.2018123501351630410310
    [Google Scholar]
  158. a AlexanderJ.F. MahalingamR. SeuaA.V. Targeting the meningeal compartment to resolve chemobrain and neuropathy via nasal delivery of functionalized mitochondria.Adv. Healthc. Mater.2022118e210215335007407
    [Google Scholar]
  159. b KumarM. MisraA. MishraA.K. MishraP. PathakK. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting.J. Drug Target. [Internet].20081610806814
    [Google Scholar]
  160. ChiuG.S. BoukelmouneN. ChiangA.C.A. Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice.Oncotarget2018985355813559730473752
    [Google Scholar]
  161. HannaD.M.F. YoushiaJ. FahmyS.F. GeorgeM.Y. Nose to brain delivery of naringin-loaded chitosan nanoparticles for potential use in oxaliplatin-induced chemobrain in rats: Impact on oxidative stress, cGAS/STING and HMGB1/RAGE/TLR2/MYD88 inflammatory axes.Expert Opin. Drug Deliv.202320121859187337357778
    [Google Scholar]
  162. Biddlestone-ThorpeL. MarchiN. GuoK. Nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents.Adv. Drug Deliv. Rev.201264760561322178615
    [Google Scholar]
  163. IbrahimS.S. Abo ElseoudO.G. MohamedyM.H. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways.Neuropharmacology202119710873834339751
    [Google Scholar]
  164. AlexanderJ.F. SeuaA.V. ArroyoL.D. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits.Theranostics20211173109313033537077
    [Google Scholar]
  165. MittalD. AliA. MdS. BabootaS. SahniJ.K. AliJ. Insights into direct nose to brain delivery: Current status and future perspective.Drug Deliv.2014212758624102636
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385291482240426101519
Loading
/content/journals/pnt/10.2174/0122117385291482240426101519
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test