Skip to content
2000
image of Progress on One-dimensional Vanadium Pentoxide-based Nanomaterials for Advanced Energy Storage ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), China

Abstract

One-dimensional (1D) vanadium-based nanostructures have advantageous properties and are showing emerging critical applications in the fields of catalysis, smart devices, and electrochemical energy storage. We herein timely gave an overview of the 1D vanadium pentoxide (VO)-based nanomaterials for these promising applications, especially regarding the merits of different synthetic methods, structures and properties combined with recent research frontiers in advanced energy storage, including batteries, supercapacitors and like. The high capacity, high rate and flexibility of 1D VO-based nanomaterials endow them with great potential in high-energy-density, high-power energy devices and specific/harsh environments. Finally, the directions and suggestions are provided for further development of this emerging and promising field.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105349485241028104311
2025-01-01
2025-06-26
Loading full text...

Full text loading...

References

  1. Hu H. Wang S. Feng X. Pauly M. Decher G. Long Y. In-plane aligned assemblies of 1D-nanoobjects: Recent approaches and applications. Chem. Soc. Rev. 2020 49 2 509 553 10.1039/C9CS00382G 31845689
    [Google Scholar]
  2. Wang R. Chen C. Zheng Y. Wang H. Liu J.W. Yu S.H. Structure–property relationship of assembled nanowire materials. Mater. Chem. Front. 2020 4 10 2881 2903 10.1039/D0QM00365D
    [Google Scholar]
  3. Hu P. Hu P. Vu T.D. Li M. Wang S. Ke Y. Zeng X. Mai L. Long Y. Vanadium Oxide: Phase diagrams, structures, synthesis, and applications. Chem. Rev. 2023 123 8 4353 4415 10.1021/acs.chemrev.2c00546 36972332
    [Google Scholar]
  4. Liu P. Zhu K. Gao Y. Luo H. Lu L. Recent progress in the applications of vanadium‐based oxides on energy storage: From Low‐Dimensional nanomaterials synthesis to 3D micro/nano‐structures and free‐standing electrodes fabrication. Adv. Energy Mater. 2017 7 23 1700547 10.1002/aenm.201700547
    [Google Scholar]
  5. Liu M. Su B. Tang Y. Jiang X. Yu A. Recent advances in nanostructured vanadium oxides and composites for energy conversion. Adv. Energy Mater. 2017 7 23 1700885 10.1002/aenm.201700885
    [Google Scholar]
  6. Yue Y. Liang H. Micro‐ and Nano‐structured vanadium pentoxide (V 2 O 5 ) for electrodes of lithium‐ion batteries. Adv. Energy Mater. 2017 7 17 1602545 10.1002/aenm.201602545
    [Google Scholar]
  7. Yao J. Li Y. Massé R.C. Uchaker E. Cao G. Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Mater. 2018 11 205 259 10.1016/j.ensm.2017.10.014
    [Google Scholar]
  8. Zhang Y. Lai J. Gong Y. Hu Y. Liu J. Sun C. Wang Z.L. A Safe high-performance all-solid-state lithium–vanadium battery with a freestanding V 2 O 5 nanowire composite paper cathode. ACS Appl. Mater. Interfaces 2016 8 50 34309 34316 10.1021/acsami.6b10358 27998115
    [Google Scholar]
  9. Rui X. Zhu J. Liu W. Tan H. Sim D. Xu C. Zhang H. Ma J. Hng H.H. Lim T.M. Yan Q. Facile preparation of hydrated vanadium pentoxide nanobelts based bulky paper as flexible binder-free cathodes for high-performance lithium ion batteries. RSC Advances 2011 1 1 117 122 10.1039/c1ra00281c
    [Google Scholar]
  10. Wang Y. Zhang H.J. Siah K.W. Wong C.C. Lin J. Borgna A. One pot synthesis of self-assembled V2O5 nanobelt membrane via capsule-like hydrated precursor as improved cathode for Li-ion battery. J. Mater. Chem. 2011 21 28 10336 10341 10.1039/c1jm10783f
    [Google Scholar]
  11. Zhai T. Liu H. Li H. Fang X. Liao M. Li L. Zhou H. Koide Y. Bando Y. Golberg D. Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010 22 23 2547 2552 10.1002/adma.200903586 20449845
    [Google Scholar]
  12. Xiong C. Aliev A.E. Gnade B. Balkus K.J. Jr Fabrication of silver vanadium oxide and V2O5 nanowires for electrochromics. ACS Nano 2008 2 2 293 301 10.1021/nn700261c 19206630
    [Google Scholar]
  13. Chou S.L. Wang J.Z. Sun J.Z. Wexler D. Forsyth M. Liu H.K. MacFarlane D.R. Dou S.X. High capacity, safety, and enhanced cyclability of lithium metal battery using a V 2 O 5 Nanomaterial cathode and room temperature ionic liquid electrolyte. Chem. Mater. 2008 20 22 7044 7051 10.1021/cm801468q
    [Google Scholar]
  14. Ding N. Liu S. Feng X. Gao H. Fang X. Xu J. Tremel W. Lieberwirth I. Chen C. Hydrothermal growth and characterization of nanostructured vanadium-based oxides. Cryst. Growth Des. 2009 9 4 1723 1728 10.1021/cg800645c
    [Google Scholar]
  15. Liu Q. Li Z.F. Liu Y. Zhang H. Ren Y. Sun C.J. Lu W. Zhou Y. Stanciu L. Stach E.A. Xie J. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 2015 6 1 6127 10.1038/ncomms7127 25600907
    [Google Scholar]
  16. Biette L. Carn F. Maugey M. Achard M.F. Maquet J. Steunou N. Livage J. Serier H. Backov R. Macroscopic fibers of oriented vanadium oxide ribbons and their application as highly sensitive alcohol microsensors. Adv. Mater. 2005 17 24 2970 2974 10.1002/adma.200501368
    [Google Scholar]
  17. Rui X. Tang Y. Malyi O.I. Gusak A. Zhang Y. Niu Z. Tan H.T. Persson C. Chen X. Chen Z. Yan Q. Ambient dissolution–recrystallization towards large-scale preparation of V2O5 nanobelts for high-energy battery applications. Nano Energy 2016 22 583 593 10.1016/j.nanoen.2016.03.001
    [Google Scholar]
  18. Lausser C. Cölfen H. Antonietti M. Mesocrystals of vanadium pentoxide: A comparative evaluation of three different pathways of mesocrystal synthesis from tactosol precursors. ACS Nano 2011 5 1 107 114 10.1021/nn1017186 21204578
    [Google Scholar]
  19. Wang P.P. Yao Y.X. Xu C.Y. Wang L. He W. Zhen L. Self-standing flexible cathode of V2O5 nanobelts with high cycling stability for lithium-ion batteries. Ceram. Int. 2016 42 13 14595 14600 10.1016/j.ceramint.2016.06.075
    [Google Scholar]
  20. Burghard Z. Leineweber A. van Aken P.A. Dufaux T. Burghard M. Bill J. Hydrogen-bond reinforced vanadia nanofiber paper of high stiffness. Adv. Mater. 2013 25 17 2468 2473 10.1002/adma.201300135 23468458
    [Google Scholar]
  21. Armer C.F. Yeoh J.S. Li X. Lowe A. Electrospun vanadium-based oxides as electrode materials. J. Power Sources 2018 395 414 429 10.1016/j.jpowsour.2018.05.076
    [Google Scholar]
  22. Ni W. Preparation method of high-purity vanadium pentoxide nanofiber non-woven fabric. CN Patent 113481656B 2021
  23. Ni W. Low-cost room-temperature rapid batch preparation method and equipment for special-shaped vanadium oxide nanofibers and aggregates thereof. CN Patent 114293321B 2021
  24. Ni W. Preparation method of porous nano vanadium oxide, porous nano vanadium oxide and application. CN Patent 116119713A 2022
  25. Ni W. Low-dimensional vanadium-based high-voltage cathode materials for promising rechargeable alkali-ion batteries. Materials 2024 17 3 587 10.3390/ma17030587 38591436
    [Google Scholar]
  26. Ni W. Green, sustainable and massive synthesis of sodium vanadate nanowires toward industrialization. Prog. Nat. Sci. 2023 33 6 918 923 10.1016/j.pnsc.2024.01.004
    [Google Scholar]
  27. Ni W. 2023 Hydrated sodium polyvanadate, sodium vanadium oxide nanofiber and aggregate and preparation method. CN Patent 117187987A 2023
  28. Ni W. 2023 Method for preparing sodium polyvanadate nanowire balls in large scale. CN Patent 117208961A 2023
  29. Ni W. Peng B. Study on the optimized preparation of high-purity V2O5 nanowire nonwoven. Iron Steel Vanadium Titanium 2022 43 68 72 10.7513/j.issn.1004‑7638.2022.02.011
    [Google Scholar]
  30. Knöller A. Lampa C.P. Cube F. Zeng T.H. Bell D.C. Dresselhaus M.S. Burghard Z. Bill J. Strengthening of ceramic-based artificial nacre via synergistic interactions of 1D Vanadium Pentoxide and 2D Graphene Oxide building blocks. Sci. Rep. 2017 7 1 40999 10.1038/srep40999 28102338
    [Google Scholar]
  31. Wicklein B. Diem A.M. Knöller A. Cavalcante M.S. Bergström L. Bill J. Burghard Z. Dual‐fiber approach toward flexible multifunctional hybrid materials. Adv. Funct. Mater. 2018 28 27 1704274 10.1002/adfm.201704274
    [Google Scholar]
  32. Knöller A. Kilper S. Diem A.M. Widenmeyer M. Runčevski T. Dinnebier R.E. Bill J. Burghard Z. Ultrahigh damping capacities in lightweight structural materials. Nano Lett. 2018 18 4 2519 2524 10.1021/acs.nanolett.8b00194 29558622
    [Google Scholar]
  33. Knöller A. Runčevski T. Dinnebier R.E. Bill J. Burghard Z. Cuttlebone-like V2O5 Nanofibre scaffolds – advances in structuring cellular solids. Sci. Rep. 2017 7 1 42951 10.1038/srep42951 28218301
    [Google Scholar]
  34. Diem A.M. Bill J. Burghard Z. Creasing highly porous V 2 O 5 Scaffolds for high energy density Aluminum-Ion batteries. ACS Appl. Energy Mater. 2020 3 4 4033 4042 10.1021/acsaem.0c00455
    [Google Scholar]
  35. Sajitha S. Aparna U. Deb B. Ultra‐thin manganese dioxide‐encrusted vanadium pentoxide nanowire mats for electrochromic energy storage applications. Adv. Mater. Interfaces 2019 6 21 1901038 10.1002/admi.201901038
    [Google Scholar]
  36. Mai L. Xu X. Xu L. Han C. Luo Y. Vanadium oxide nanowires for Li-ion batteries. J. Mater. Res. 2011 26 17 2175 2185 10.1557/jmr.2011.171
    [Google Scholar]
  37. Zhou Y. Pan Q. Zhang J. Han C. Wang L. Xu H. Insights into synergistic effect of acid on morphological control of vanadium oxide: Toward high lithium storage. Adv. Sci. (Weinh.) 2021 8 2 2002579 10.1002/advs.202002579 33511012
    [Google Scholar]
  38. Qin X. Wang X. Sun J. Lu Q. Omar A. Mikhailova D. Polypyrrole wrapped V2O5 nanowires composite for advanced aqueous Zinc-Ion batteries. Front. Energy Res. 2020 8 199 10.3389/fenrg.2020.00199
    [Google Scholar]
  39. Chen K. Zhang G. Xiao L. Li P. Li W. Xu Q. Xu J. Polyaniline encapsulated amorphous V 2 O 5 Nanowire‐modified multi‐functional separators for lithium–sulfur batteries. Small Methods 2021 5 3 2001056 10.1002/smtd.202001056 34927835
    [Google Scholar]
  40. Guo Y. Zhang Y. Zhang Y. Xiang M. Wu H. Liu H. Dou S. Interwoven V 2 O 5 nanowire/graphene nanoscroll hybrid assembled as efficient polysulfide-trapping-conversion interlayer for long-life lithium–sulfur batteries. J. Mater. Chem. A Mater. Energy Sustain. 2018 6 40 19358 19370 10.1039/C8TA06610H
    [Google Scholar]
  41. Li H. He J. Cao X. Kang L. He X. Xu H. Shi F. Jiang R. Lei Z. Liu Z.H. All solid-state V2O5-based flexible hybrid fiber supercapacitors. J. Power Sources 2017 371 18 25 10.1016/j.jpowsour.2017.10.031
    [Google Scholar]
  42. Dong J. Jiang Y. Wei Q. Tan S. Xu Y. Zhang G. Liao X. Yang W. Li Q. An Q. Mai L. Strongly Coupled Pyridine‐V 2 O 5 · n H 2 O nanowires with intercalation pseudocapacitance and stabilized layer for high energy Sodium Ion capacitors. Small 2019 15 22 1900379 10.1002/smll.201900379 31018042
    [Google Scholar]
  43. Leroy C.M. Achard M.F. Babot O. Steunou N. Massé P. Livage J. Binet L. Brun N. Backov R. Designing Nanotextured vanadium oxide-based macroscopic fibers: Application as alcoholic sensors. Chem. Mater. 2007 19 16 3988 3999 10.1021/cm0711966
    [Google Scholar]
  44. Qi X. Lu Z. You E.M. He Y. Zhang Q. Yi H.J. Li D. Ding S.Y. Jiang Y. Xiong X. Xu J. Ge D. Liu X.Y. Bai H. Nanocombing effect leads to nanowire-based, in-plane, uniaxial thin films. ACS Nano 2018 12 12 12701 12712 10.1021/acsnano.8b07671 30543280
    [Google Scholar]
  45. Gu G. Schmid M. Chiu P.W. Minett A. Fraysse J. Kim G.T. Roth S. Kozlov M. Muñoz E. Baughman R.H. V2O5 nanofibre sheet actuators. Nat. Mater. 2003 2 5 316 319 10.1038/nmat880 12704380
    [Google Scholar]
  46. Myung S. Lee M. Kim G.T. Ha J.S. Hong S. Large‐scale “Surface‐Programmed Assembly” of pristine vanadium oxide nanowire‐based devices. Adv. Mater. 2005 17 19 2361 2364 10.1002/adma.200500682
    [Google Scholar]
  47. Mukherjee A. Ardakani H.A. Yi T. Cabana J. Shahbazian-Yassar R. Klie R.F. Direct characterization of the Li intercalation mechanism into α-V2O5 nanowires using in-situ transmission electron microscopy. Appl. Phys. Lett. 2017 110 21 213903 10.1063/1.4984111
    [Google Scholar]
  48. De Jesus L.R. Horrocks G.A. Liang Y. Parija A. Jaye C. Wangoh L. Wang J. Fischer D.A. Piper L.F.J. Prendergast D. Banerjee S. Mapping polaronic states and lithiation gradients in individual V2O5 nanowires. Nat. Commun. 2016 7 1 12022 10.1038/ncomms12022 27349567
    [Google Scholar]
  49. Strelcov E. Cothren J. Leonard D. Borisevich A.Y. Kolmakov A. In situ SEM study of lithium intercalation in individual V 2 O 5 nanowires. Nanoscale 2015 7 7 3022 3027 10.1039/C4NR06767C 25600354
    [Google Scholar]
  50. Aliahmad N. Liu Y. Xie J. Agarwal M. V 2 O 5 /Graphene hybrid supported on paper current collectors for flexible ultrahigh-capacity electrodes for lithium-ion batteries. ACS Appl. Mater. Interfaces 2018 10 19 16490 16499 10.1021/acsami.8b02721 29688002
    [Google Scholar]
  51. Yaseen M.W. Maman M.P. Mishra S. Mohammad I. Li X. Strategies to alleviate distortive phase transformations in Li-ion intercalation reactions: An example with vanadium pentoxide. Nanoscale 2024 16 20 9710 9727 10.1039/D3NR06138H 38682562
    [Google Scholar]
  52. Luo Y. Rezaei S. Santos D.A. Zhang Y. Handy J.V. Carrillo L. Schultz B.J. Gobbato L. Pupucevski M. Wiaderek K. Charalambous H. Yakovenko A. Pharr M. Xu B.X. Banerjee S. Cation reordering instead of phase transitions: Origins and implications of contrasting lithiation mechanisms in 1D ζ- and 2D α-V 2 O 5. Proc. Natl. Acad. Sci. USA 2022 119 4 e2115072119 10.1073/pnas.2115072119 35064084
    [Google Scholar]
  53. Zhu Y.H. Zhang Q. Yang X. Zhao E.Y. Sun T. Zhang X.B. Wang S. Yu X.Q. Yan J.M. Jiang Q. Reconstructed orthorhombic V2O5 polyhedra for fast ion diffusion in K-Ion batteries. Chem 2019 5 1 168 179 10.1016/j.chempr.2018.10.004
    [Google Scholar]
  54. Huang X. Rui X. Hng H.H. Yan Q. Vanadium pentoxide‐based cathode materials for lithium‐ion batteries: Morphology control, carbon hybridization, and cation doping. Part. Part. Syst. Charact. 2015 32 3 276 294 10.1002/ppsc.201400125
    [Google Scholar]
  55. Zhang Y. Wang Y. Xiong Z. Hu Y. Song W. Huang Q. Cheng X. Chen L.Q. Sun C. Gu H. V 2 O 5 Nanowire composite paper as a high-performance lithium-ion battery cathode. ACS Omega 2017 2 3 793 799 10.1021/acsomega.7b00037 31457471
    [Google Scholar]
  56. Seng K.H. Liu J. Guo Z.P. Chen Z.X. Jia D. Liu H.K. Free-standing V2O5 electrode for flexible lithium ion batteries. Electrochem. Commun. 2011 13 5 383 386 10.1016/j.elecom.2010.12.002
    [Google Scholar]
  57. Wang L. Shu T. Guo S. Lu Y. Li M. Nzabahimana J. Hu X. Fabricating strongly coupled V2O5@PEDOT nanobelts/graphene hybrid films with high areal capacitance and facile transferability for transparent solid-state supercapacitors. Energy Storage Mater. 2020 27 150 158 10.1016/j.ensm.2020.01.026
    [Google Scholar]
  58. Gittleson F.S. Hwang D. Ryu W.H. Hashmi S.M. Hwang J. Goh T. Taylor A.D. Ultrathin nanotube/nanowire electrodes by spin–spray layer-by-layer assembly: A concept for transparent energy storage. ACS Nano 2015 9 10 10005 10017 10.1021/acsnano.5b03578 26344174
    [Google Scholar]
  59. Gu S. Wang H. Wu C. Bai Y. Li H. Wu F. Confirming reversible Al 3+ storage mechanism through intercalation of Al 3+ into V 2 O 5 nanowires in a rechargeable aluminum battery. Energy Storage Mater. 2017 6 9 17 10.1016/j.ensm.2016.09.001
    [Google Scholar]
  60. Tepavcevic S. Liu Y. Zhou D. Lai B. Maser J. Zuo X. Chan H. Král P. Johnson C.S. Stamenkovic V. Markovic N.M. Rajh T. Nanostructured layered cathode for rechargeable Mg-Ion batteries. ACS Nano 2015 9 8 8194 8205 10.1021/acsnano.5b02450 26169073
    [Google Scholar]
  61. Moretti A. Passerini S. Bilayered nanostructured V 2 O 5 · n H 2 O for metal batteries. Adv. Energy Mater. 2016 6 23 1600868 10.1002/aenm.201600868
    [Google Scholar]
  62. Alcántara R. Lavela P. Edström K. Fichtner M. Le T.K. Floraki C. Aivaliotis D. Vernardou D. Metal-Ion intercalation mechanisms in vanadium pentoxide and its new perspectives. Nanomaterials 2023 13 24 3149 10.3390/nano13243149 38133046
    [Google Scholar]
  63. Diem A.M. Fenk B. Bill J. Burghard Z. Binder-Free V2O5 cathode for high energy density rechargeable Aluminum-Ion batteries. Nanomaterials (Basel) 2020 10 2 247 10.3390/nano10020247 32019197
    [Google Scholar]
  64. Xia Z. Li S. Wu G. Shao Y. Yang D. Luo J. Jiao Z. Sun J. Shao Y. Manipulating hierarchical orientation of wet‐spun hybrid fibers via Rheological engineering for Zn‐Ion fiber batteries. Adv. Mater. 2022 34 33 2203905 10.1002/adma.202203905 35765207
    [Google Scholar]
  65. Wang S. Li L. Shao Y. Zhang L. Li Y. Wu Y. Hao X. Transition‐metal oxynitride: A facile strategy for improving electrochemical capacitor storage. Adv. Mater. 2019 31 10 1806088 10.1002/adma.201806088 30637832
    [Google Scholar]
  66. Chen Z. Augustyn V. Wen J. Zhang Y. Shen M. Dunn B. Lu Y. High-performance supercapacitors based on intertwined CNT/V2O5 nanowire nanocomposites. Adv. Mater. 2011 23 6 791 795 10.1002/adma.201003658 21287644
    [Google Scholar]
  67. Chen Z. Augustyn V. Jia X. Xiao Q. Dunn B. Lu Y. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 2012 6 5 4319 4327 10.1021/nn300920e 22471878
    [Google Scholar]
  68. Chao D. Xia X. Liu J. Fan Z. Ng C.F. Lin J. Zhang H. Shen Z.X. Fan H.J. A V2O5/conductive-polymer core/shell nanobelt array on three-dimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014 26 33 5794 5800 10.1002/adma.201400719 24888872
    [Google Scholar]
  69. Zhou H. Zhu G. Dong S. Liu P. Lu Y. Zhou Z. Cao S. Zhang Y. Pang H. Ethanol‐Induced Ni 2+ ‐Intercalated cobalt organic frameworks on vanadium pentoxide for synergistically enhancing the performance of 3D‐Printed micro‐supercapacitors. Adv. Mater. 2023 35 19 2211523 10.1002/adma.202211523 36807415
    [Google Scholar]
  70. Ni W. Shi L-Y. Microbatteries for advanced applications. Handbook of Energy Materials. Gupta R. Springer Singapore 2022 1 25 10.1007/978‑981‑16‑4480‑1_12‑1
    [Google Scholar]
  71. Yan M. Wang F. Han C. Ma X. Xu X. An Q. Xu L. Niu C. Zhao Y. Tian X. Hu P. Wu H. Mai L. Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance. J. Am. Chem. Soc. 2013 135 48 18176 18182 10.1021/ja409027s 24219156
    [Google Scholar]
  72. Xia C. Lin Z. Zhou Y. Zhao C. Liang H. Rozier P. Wang Z. Alshareef H.N. Large intercalation Pseudocapacitance in 2D VO 2 (B): Breaking through the kinetic barrier. Adv. Mater. 2018 30 40 1803594 10.1002/adma.201803594 30160318
    [Google Scholar]
  73. Li C. Liu H. Wu J. Li C. Shao X. Xie G. Luo Y. Cathode materials for thermal batteries: Properties, recent advances, and approaches to modification. J. Power Sources 2024 620 235258 10.1016/j.jpowsour.2024.235258
    [Google Scholar]
  74. Xu C. Jin C. Wang X. Gong X. Yin J. Zhao L. Pu X. Li W. Structured confinement effects of hierarchical V2O5 cathodes to suppress flow of molten salt in high specific energy thermal batteries with binder-free MgO. Electrochim. Acta 2022 401 139496 10.1016/j.electacta.2021.139496
    [Google Scholar]
  75. Deng Y. Li H. Liang J. Liao J. Huang M. Chen R. Long Y. Robichaud J. Djaoued Y. Excellent Electrochromic Properties of Ti4+-Induced Nanowires V2O5 Films. Materials (Basel) 2024 17 19 4680 https://www.mdpi.com/1996-1944/17/19/4680 10.3390/ma17194680
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105349485241028104311
Loading
/content/journals/nanotec/10.2174/0118722105349485241028104311
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test