Skip to content
2000
image of Research on Controllable Synthesis and Growth Mechanism of Sodium Vanadium Fluorophosphate Nanosheets

Abstract

Background

Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.

Objective

Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.

Methods

This study uses a homogenizer with high dispersion and shear force to directionally control the collision of sodium vanadium fluorophosphate nanoparticles with higher specific surface energy during the initial nucleation stage, forming nanosheet structures.

Results

The growth mechanism of these nanosheets was analyzed using SEM, XRD, AFM, and DFT simulation. Results indicate that the crystal surfaces with higher surface energy undergo directional collisions in the early nucleation stage, gradually reducing the surface energy and stabilizing the system, resulting in sodium vanadium fluorophosphate nanosheets.

Conclusion

Due to the larger specific surface area and pore structure, these nanosheets exhibit excellent rate performance and cycle stability, making them suitable for application and promotion in the field of fast-charging energy storage.

Loading

Article metrics loading...

/content/journals/nanotec/10.2174/0118722105340055241022051936
2025-01-07
2025-06-18
Loading full text...

Full text loading...

References

  1. Wang B. Li B.B. Sun G.X. Technologies and industrial development of new-type energy storage. Energy Energy Conserv. 2023 11 8 13 10.1016/j.est.2023.107610
    [Google Scholar]
  2. Zheng Q. Jiang L.X. Xu Y.J. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality. Bull. Chin. Acad. Sci. 2022 37 4 529 540 10.16418/j.issn.1000‑3045.20220311001
    [Google Scholar]
  3. Xiao J. Shi F. Glossmann T. Burnett C. Liu Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 2023 8 4 329 339 10.1038/s41560‑023‑01221‑y
    [Google Scholar]
  4. Yin X. Teng A. Zeng Z. Meng H. Wu W. Facile and scalable preparation of 2D-MoS2/graphene oxide composite for supercapacitor. Ionics 2022 28 11 5223 5232 10.1007/s11581‑022‑04719‑9
    [Google Scholar]
  5. Mamoor M. Li Y. Wang L. Recent progress on advanced high energy electrode materials for sodium ion batteries. Green Energy Res. 1 3 100033 10.1016/j.gerr.2023.100033
    [Google Scholar]
  6. Zhang P. Kang L.B. Wang M.J. Technology feasibility and economic analysis of Na-ion battery energy storage. Energy Storage Sci. Technol. 2022 11 6 1892 1901
    [Google Scholar]
  7. Gao Y. Zhang H. Peng J. Li L. Xiao Y. Li L. Liu Y. Qiao Y. Chou S-L. A 30‐year overview of sodium‐ion batteries. Carbon Energy 2024 6 6 e464 10.1002/cey2.464
    [Google Scholar]
  8. Jin T. Li H. Zhu K. Wang P.F. Liu P. Jiao L. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020 49 8 2342 2377 10.1039/C9CS00846B 32222751
    [Google Scholar]
  9. Xu D. Chen R. Chen B. Zhou S. Zhang Y. Chang Z. Pan A. High-performance flexible sodium-ion batteries enabled by high-voltage sodium vanadium fluorophosphate nanorod arrays. Sci. China Mater. 2023 66 10 3837 3845 10.1007/s40843‑023‑2550‑2
    [Google Scholar]
  10. Xu C. Zhao J. Yang C. Hu Y.S. Polyanionic cathode materials for practical Na-ion batteries toward high energy density and long cycle life. ACS Cent. Sci. 2023 9 9 1721 1736 10.1021/acscentsci.3c00907 37780368
    [Google Scholar]
  11. Gover R. Bryan A. Burns P. Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ion. 2006 177 17-18 1495 1500 10.1016/j.ssi.2006.07.028
    [Google Scholar]
  12. Yue L. Peng C. Guo C. Zhou X. Li G. Wang N. Zhang J. Liu J. Bai Z. Song Zhao X. Na3V2-xFex(PO4)2O2F: An advanced cathode material with ultra-high stability for superior sodium storage. Chem. Eng. J. 2022 441 136132 10.1016/j.cej.2022.136132
    [Google Scholar]
  13. Liang K. Wang S. Zhao H. Huang X. Ren Y. He Z. Mao J. Zheng J. A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chem. Eng. J. 2022 428 131780 10.1016/j.cej.2021.131780
    [Google Scholar]
  14. Ma J. Zu X. Qiu X. Zhang W. Dual carbon skeleton supported NVPFO sodium-ion battery cathode with high rate capability, superior cycling performance, and wide temperature adaptability. Chem. Eng. J. 2024 493 152792 10.1016/j.cej.2024.152792
    [Google Scholar]
  15. Subramanian Y. Oh W. Choi W. Lee H. Jeong M. Thangavel R. Yoon W-S. Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life. Chem. Eng. J. 2021 403 126291 10.1016/j.cej.2020.126291
    [Google Scholar]
  16. Liu X. Feng G. Wu Z. Wang D. Wu C. Yang L. Xiang W. Chen Y. Guo X. Zhong B. Investigating the influence of sodium sources towards improved Na3V2 (PO4)3 cathode of sodium-ion batteries. J. Alloys Compd. 2020 815 152430 10.1016/j.jallcom.2019.152430
    [Google Scholar]
  17. Wang H.K. Yu W. Yao T.H. A sodium vanadium fluorophosphate based positive electrode material and its preparation method and application. CN202410029717.2 2024
  18. Bai Y. Wu C. Li Y. Preparation of sodium ion batteries and vanadium sodium fluorophosphate electrode materials. CN202310435660.1 2023
  19. Zhang Q.Q. Shen X. Zhou Q.Q. Large scale one-pot synthesis of monodispersed Na3(VOPO4)2F cathode for Na-ion batteries. Energy Mater. Adv. 2022 9828020 10.34133/2022/9828020
    [Google Scholar]
  20. Qi Y. Mu L. Zhao J. Hu Y-S. Liu H. Dai S. pH-regulative synthesis of Na 3 (VPO 4 ) 2 F 3 nanoflowers and their improved Na cycling stability. J. Mater. Chem. A Mater. Energy Sustain. 2016 4 19 7178 7184 10.1039/C6TA01023G
    [Google Scholar]
  21. Peng M. Zhang D. Zheng L. Wang X. Lin Y. Xia D. Sun Y. Guo G. Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy 2017 31 64 73 10.1016/j.nanoen.2016.11.023
    [Google Scholar]
  22. Shen X. Zhao J. Li Y. Sun X. Yang C. Liu H. Hu Y-S. Controlled synthesis of Na3(VOPO4)2F cathodes with an ultralong cycling performance. ACS Appl. Energy Mater. 2019 2 10 7474 7482 10.1021/acsaem.9b01458
    [Google Scholar]
  23. Shen X. Zhou Q. Han M. Qi X. Li B. Zhang Q. Zhao J. Yang C. Liu H. Hu Y.S. Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries. Nat. Commun. 2021 12 1 2848 10.1038/s41467‑021‑23132‑w 33990596
    [Google Scholar]
  24. Li W.X. Gao Y.K. Cao L.D. Effect of specific surface area on the performance of power LFP cell batteries. Guangdong Chem. Ind. 50 17 2023
    [Google Scholar]
  25. Gu E.L. Research on sodium vanadium phosphate/carbon composite as positive electrode material for sodium ion batteries. 2019
    [Google Scholar]
  26. Lin Z. Phase formation in NaH2PO4–VOSO4–NaF–H2O system and rapid synthesis of Na3V2O2x(PO4)2F3-2x. Crystals (Basel) 2023 14 1 43 10.3390/cryst14010043
    [Google Scholar]
  27. Zhang D. Yuan X. Xin Y. Liu T. Han H. Du G. Teng A. Research on preparation of nano-flake sodium vanadyl phosphate. Huaxue Xuebao 2024 82 3 274 280 10.6023/A23100449
    [Google Scholar]
  28. Wang Q. First principles study on the doping modification of sodium vanadium phosphate as a positive electrode material for sodium ion batteries. 2019
    [Google Scholar]
  29. Zhang Z. Wang R. Zeng J. Shi K. Zhu C. Yan X. Size effects in sodium ion batteries. Adv. Funct. Mater. 2021 31 52 2106047 10.1002/adfm.202106047
    [Google Scholar]
  30. Thirupathi R. Kumari V. Chakrabarty S. Omar S. Recent progress and prospects of NASICON framework electrodes for Na-ion batteries. Prog. Mater. Sci. 2023 137 101128 10.1016/j.pmatsci.2023.101128
    [Google Scholar]
/content/journals/nanotec/10.2174/0118722105340055241022051936
Loading
/content/journals/nanotec/10.2174/0118722105340055241022051936
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test