Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Hydrogels are one of the most extensively studied novel drug delivery dosage forms owing to their satisfactory results in drug delivery in various conditions, including pain management, immunomodulation, carcinomas, healing of wounds, and cardiology. A crosslinked polymeric network and an optimum amount of water combine to form hydrogels. Due to their specific properties such as biocompatibility, biodegradability, hydrophilicity, and non-toxic to biological tissues, hydrogels are demanding biomaterials. Furthermore, due to their programmable physical characteristics, controlled degradation behavior, and capability to preserve unstable medicines from degradation, hydrogels serve as an advanced drug delivery system in which diverse physiochemical interactions with the polymeric matrix containing embedded medications control their release. Despite significant challenges remaining, there has been significant progress in recent years in overcoming the clinical and pharmacological constraints of hydrogels for drug delivery applications This review covers various hydrogel-forming polymers, strategies for crosslinking of gelling agents, and release mechanisms from the hydrogel. Moreover, the current work includes a few marketed hydrogel preparations and patent rights associated with it, describing its mechanism of action against the underlying diseases.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/2210681213666230417083119
2023-06-01
2025-09-03
Loading full text...

Full text loading...

/content/journals/nanoasi/10.2174/2210681213666230417083119
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test