Skip to content
2000
Volume 14, Issue 6
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Background

In the present investigation, nano-lipid technology was exploited to control the release of celecoxib (CXB) and overcome its dissolution problem. Solid lipid nanoparticles (SLNs) have a small particle size (50-1000 nm) that results in a large surface area-to-volume ratio, which further enhances the contact between the drug and the dissolution medium. This leads to improved drug release and absorption.

Aim and Objective

This study aimed to enhance the solubility and hence improve the therapeutic efficacy of a BCS Class-II drug-celecoxib formulating it as solid lipid nanoparticles.

Methods

CXB-loaded-SLNs were prepared using the solvent emulsification-diffusion technique and optimized by CCD. Characterization included FTIR, drug loading, particle size, PDI, zeta potential, and release and anti-inflammatory studies.

Results

Optimized Formulation (OF1) exhibited particle size, PDI, and zeta potential were found to be 314 nm, 0.204, and -18.73 mV, respectively, with entrapment efficiency (79±0.18 %) and drug loading (44.38±0.21 %). The best-fitted model was the Korsemeyer-Peppas model, with drug release of 89.42 ±0.12 % in 24 h. OF1 formulation reduced the rat paw volume to a minimum (1±0.32) in 24 h when compared to pure API (2±0.62) and marketed preparation (2±0.42).

Conclusion

OF1 demonstrated sustained drug release with enhanced solubility and better anti-inflammatory studies compared to pure API.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812334601241023113656
2024-10-30
2025-01-27
Loading full text...

Full text loading...

References

  1. YasirM. SaraU.V.S. SomI. Haloperidol loaded solid lipid nanoparticles for nose to brain delivery: Stability and in vivo studies.J. Nanomed. Nanotechnol.20151s711010.4172/2157‑7439.S7‑006
    [Google Scholar]
  2. KishoreN. RajaM.D. KumarC.S. DhanalekshmiU. SrinivasanR. Lipid carriers for delivery of celecoxib: In vitro, in vivo assessment of nanomedicine in rheumatoid arthritis.Eur. J. Lipid Sci. Technol.2016118694995810.1002/ejlt.201400658
    [Google Scholar]
  3. ReddyP.K. ParthibanS. VikneswariA. KumarG.P.S. A modern review on solid lipid nanoparticles as novel controlled drug delivery system.Int. J. Res. Pharm Nano Sci.201434313325
    [Google Scholar]
  4. WangW. ChenT. XuH. RenB. ChengX. QiR. LiuH. WangY. YanL. ChenS. YangQ. ChenC. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer.Molecules2018237157810.3390/molecules23071578 29966245
    [Google Scholar]
  5. KesharwaniR. SachanA. SinghS. PatelD. Formulation and evaluation of solid lipid nanoparticle (SLN) based topical gel of etoricoxib.J. Appl. Pharm. Sci.201661012413110.7324/JAPS.2016.601017
    [Google Scholar]
  6. Rahmanian-DevinP. AskariV.R. Sanei-FarZ. Baradaran RahimiV. KamaliH. JaafariM.R. GolmohammadzadehS. Preparation and characterization of solid lipid nanoparticles encapsulated noscapine and evaluation of its protective effects against imiquimod-induced psoriasis-like skin lesions.Biomed. Pharmacother.202316811582310.1016/j.biopha.2023.115823 37924792
    [Google Scholar]
  7. MaitiD. Naseeruddin InamdarM. AlmuqbilM. SureshS. Mohammed Basheeruddin AsdaqS. AlshehriS. Ali Al ArfajS. Musharraf AlamriA. Meshary AldohyanM. Theeb AlqahtaniM. Mohammed AlosaimiT. Haran AlenaziS. AlmadaniM.E. AhmedS. Mulla, J.; Imam Rabbani, S. Evaluation of solid-lipid nanoparticles formulation of methotrexate for anti-psoriatic activity.Saudi Pharm. J.202331683484410.1016/j.jsps.2023.04.007 37228325
    [Google Scholar]
  8. SakellariG.I. ZafeiriI. BatchelorH. SpyropoulosF. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active.Food Hydrocoll. Health2021110002410.1016/j.fhfh.2021.100024 35028634
    [Google Scholar]
  9. EkambaramP. Abdul Hasan SathaliA. Formulation and evaluation of solid lipid nanoparticles of ramipril.J. Young Pharm.20113321622010.4103/0975‑1483.83765 21897661
    [Google Scholar]
  10. ShahabM.S. RizwanullahM. Sarim ImamS. Formulation, optimization and evaluation of vitamin E TPGS emulsified dorzolamide solid lipid nanoparticles.J. Drug Deliv. Sci. Technol.20226810306210.1016/j.jddst.2021.103062
    [Google Scholar]
  11. ShazlyG.A. Ciprofloxacin controlled-solid lipid nanoparticles: Characterization, in vitro release, and antibacterial activity assessment.BioMed Res. Int.201720171910.1155/2017/2120734 28194408
    [Google Scholar]
  12. FouadE.A. YassinA.E.B. AlajamiH.N. Characterization of celecoxib-loaded solid lipid nanoparticles formulated with tristearin and softisan 100.Trop. J. Pharm. Res.201514220521010.4314/tjpr.v14i2.3
    [Google Scholar]
  13. Celecoxib. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/celecoxib Accessed on: Sept 10, 2022)
  14. Celecoxib. Available from: https://www.drugbank.ca/drugs/DB00482 (Accessed on: Sept 10, 2022)
  15. Ran WooM. BakY.W. CheonS. Suk KimJ. Hun JiS. Park, S.; Woo, S.; Oh Kim, J.; Giu Jin, S.; Choi, H.G. Modification of microenvironmental pH of nanoparticles for enhanced solubility and oral bioavailability of poorly water-soluble celecoxib.Int. J. Pharm.202465912417910.1016/j.ijpharm.2024.124179 38692498
    [Google Scholar]
  16. ElbrinkK. Van HeesS. RoelantD. LoomansT. HolmR. KiekensF. The influence on the oral bioavailability of solubilized and suspended drug in a lipid nanoparticle formulation: In vitro and in vivo evaluation.Eur. J. Pharm. Biopharm.202217911010.1016/j.ejpb.2022.08.010 36031014
    [Google Scholar]
  17. PathanR.R. ShaikhM.S. SyedI.J. QureshiM.A. AcharyaP.N. ShirsatM.K. Aquil-ur-RahimSiddiqui; Dehghan, M.H.; Moon, R.S. Microwave-assisted synthesis of celecoxib nanocomposites for enhancement of solubility and colon cancer targeting.Nano-Structures Nano-Objects20243710111610.1016/j.nanoso.2024.101116
    [Google Scholar]
  18. Alonso-GonzálezM. Fernández-CarballidoA. Quispe-ChaucaP. LozzaI. Martín-SabrosoC. Isabel Fraguas-SánchezA. DoE-based development of celecoxib loaded PLGA nanoparticles: In ovo assessment of its antiangiogenic effect.Eur. J. Pharm. Biopharm.202218014916010.1016/j.ejpb.2022.09.022 36220520
    [Google Scholar]
  19. BouyakhsassR. SouabiS. RifiS.K. BouaoudaS. TalebA. MadinziA. KurniawanT.A. AnouzlaA. Applicability of central composite design and response surface methodology for optimizing treatment of landfill leachate using coagulation-flocculation.Chem. Eng. Res. Des.202319766968410.1016/j.cherd.2023.08.001
    [Google Scholar]
  20. AliM. KumarA. YvazA. SalahB. Central composite design application in the optimization of the effect of pumice stone on lightweight concrete properties using RSM.Case Stud. Constr. Mater.202318e0195810.1016/j.cscm.2023.e01958
    [Google Scholar]
  21. JoshiM. PatravaleV. Nanostructured lipid carrier (NLC) based gel of celecoxib.Int. J. Pharm.20083461-212413210.1016/j.ijpharm.2007.05.060 17651933
    [Google Scholar]
  22. VermaM. NandaA. KumarY. Self-emulsifying drug delivery system of simvastatin: Formulation development, optimization by box- behnken design, in-vitro and in-situ single-pass intestinal perfusion (SPIP) Studies.Recent Pat. Drug Deliv. Formul.201912319921110.2174/1872211312666181022150435 30345934
    [Google Scholar]
  23. YasirM. SaraU.V.S. Solid lipid nanoparticles for nose to brain delivery of haloperidol: In vitro drug release and pharmacokinetics evaluation.Acta Pharm. Sin. B20144645446310.1016/j.apsb.2014.10.005 26579417
    [Google Scholar]
  24. DudhipalaN. VeerabrahmaK. Formulation development and optimization of nisoldipine loaded solid lipid nanoparticles using central composite design.Drug Dev. Ind. Pharm.201541121968197710.3109/03639045.2015.1024685 25830370
    [Google Scholar]
  25. HassanH. AdamS.K. AliasE. Meor Mohd AffandiM.M.R. ShamsuddinA.F. BasirR. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir.Molecules20212618543210.3390/molecules26185432 34576904
    [Google Scholar]
  26. BehbahaniE.S. GhaediM. AbbaspourM. RostamizadehK. Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques.Ultrason. Sonochem.20173827128010.1016/j.ultsonch.2017.03.013 28633826
    [Google Scholar]
  27. KumarJ.A. BhikshapathiD.V.R.N. Development of nilotinib loaded solid lipid nanoparticles and optimization by central composite design approach.Int. J. Appl. Pharm.202214217218010.22159/ijap.2022v14i2.43943
    [Google Scholar]
  28. YueP.F. LuX.Y. ZhangZ.Z. YuanH.L. ZhuW.F. ZhengQ. YangM. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion.AAPS PharmSciTech200910237638310.1208/s12249‑009‑9216‑3 19381837
    [Google Scholar]
  29. MauryaD.P. SultanaY. AqilM. KumarD. ChuttaniK. AliA. MishraA.K. Formulation and optimization of alkaline extracted ispaghula husk microparticles of isoniazid – In vitro and in vivo assessment.J. Microencapsul.201128647248210.3109/02652048.2011.580861 21561399
    [Google Scholar]
  30. AsasutjaritR. ThanasanchokpibullS. FuongfuchatA. VeeranondhaS. Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels.Int. J. Pharm.20114111-212813510.1016/j.ijpharm.2011.03.054 21459137
    [Google Scholar]
  31. ALHaj N.A.; Abdullah, R.; Ibrahim, S.; Bustamam, A.; Bustamam, A. Tamoxifen drug loading solid lipid nanoparticles prepared by hot high pressure homogenization techniques.Am. J. Pharmacol. Toxicol.20083321922410.3844/ajptsp.2008.219.224
    [Google Scholar]
  32. SureshG. ManjunathK. VenkateswarluV. SatyanarayanaV. Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles.AAPS PharmSciTech200781E162E17010.1208/pt0801024 17408223
    [Google Scholar]
  33. ShahM. AgrawalY.K. GaralaK. RamkishanA. Solid lipid nanoparticles of a water soluble drug, ciprofloxacin hydrochloride.Indian J. Pharm. Sci.201274543444210.4103/0250‑474X.108419 23716872
    [Google Scholar]
  34. JelvehgariM. SalatinS. BararJ. Barzegar-JalaliM. AdibkiaK. KiafarF. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles.Res. Pharm. Sci.201712111410.4103/1735‑5362.199041 28255308
    [Google Scholar]
  35. ChenD.B. YangT. LuW.L. ZhangQ. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel.Chem. Pharm. Bull. (Tokyo)200149111444144710.1248/cpb.49.1444 11724235
    [Google Scholar]
  36. YasirM. SaraU.V.S. ChauhanI. GaurP.K. SinghA.P. PuriD. Ameeduzzafar, Solid lipid nanoparticles for nose to brain delivery of donepezil: formulation, optimization by Box–Behnken design, in vitro and in vivo evaluation.Artif. Cells Nanomed. Biotechnol.201746811410.1080/21691401.2017.1394872
    [Google Scholar]
  37. HajhashemiV. MinaiyanM. BanafsheH.R. MesdaghiniaA. AbedA. The anti-inflammatory effects of venlafaxine in the rat model of carrageenan-induced paw edema.Iran. J. Basic Med. Sci.2015187654658 26351555
    [Google Scholar]
  38. AmirM. AhsanI. AkhterW. KhanS.R.A. AliI. Design and Synthesis of some azole derivatives containing 2,4,5- triphenyl imidazole moiety as anti-inflammatory and antimicrobial agents.Indian J. Chem.201150207213
    [Google Scholar]
  39. BhaskarK. AnbulJ. RavichandiranV. VenkateswarluV. MadhusudanR.V. Lipid nanoparticles for transdermal delivery of flurbiprofen: Formulation, in vitro, ex vivo and in vivo studies.Lipids Health Dis.20098610.1186/1476‑511X‑8‑6 19243632
    [Google Scholar]
  40. DaneshmandS. GolmohammadzadehS. JaafariM.R. MovaffaghJ. RezaeeM. SahebkarA. Malaekeh-NikoueiB. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization.J. Cell. Biochem.201811964251426410.1002/jcb.26617 29243841
    [Google Scholar]
  41. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  42. TrottaM. DebernardiF. CaputoO. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique.Int. J. Pharm.20032571-215316010.1016/S0378‑5173(03)00135‑2 12711170
    [Google Scholar]
  43. ZafarA. Awad AlsaidanO. AlruwailiN.K. Sarim ImamS. YasirM. Saad AlharbiK. SinghL. Muqtader AhmedM. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation.Int. J. Pharm.202262712223210.1016/j.ijpharm.2022.122232 36155794
    [Google Scholar]
  44. AroraD. BhattS. KumarM. VermaR. TanejaY. KaushalN. TiwariA. TiwariV. AlexiouA. AlbogamiS. AlotaibiS.S. MittalV. SinglaR.K. KaushikD. BatihaG.E.S. RETRACTED: QbD-based rivastigmine tartrate-loaded solid lipid nanoparticles for enhanced intranasal delivery to the brain for Alzheimer’s therapeutics.Front. Aging Neurosci.20221496024610.3389/fnagi.2022.960246 36034142
    [Google Scholar]
  45. JazuliI. Annu; Nabi, B.; moolakkadath, T.; Alam, T.; Baboota, S.; Ali, J. Optimization of nanostructured lipid carriers of lurasidone hydrochloride using box-behnken design for brain targeting: In vitro and in vivo studies.J. Pharm. Sci.201910893082309010.1016/j.xphs.2019.05.001 31077685
    [Google Scholar]
  46. YangG. WuF. ChenM. JinJ. WangR. YuanY. Formulation design, characterization, and in vitro and in vivo evaluation of nanostructured lipid carriers containing a bile salt for oral delivery of gypenosides.Int. J. Nanomedicine2019142267228010.2147/IJN.S194934 31015758
    [Google Scholar]
  47. AlsabeelahN. ArshadM.F. HashmiS. KhanR.A. KhanS. Nanocosmeceuticals for the management of ageing.Rigors and Vigors. J. Drug Deliv. Sci. Technol.20216310244810.1016/j.jddst.2021.102448
    [Google Scholar]
  48. Hernández-EsquivelR-A. Navarro-TovarG. Zárate-HernándezE. Aguirre-BañuelosP. Solid lipid nanoparticles (SLN). In: Nanocomposite Materials For Biomedical and Energy Storage Applications. SharmaA. IntechOpen202210.5772/intechopen.102536
    [Google Scholar]
  49. ÜnerM. Characterization and imaging of solid lipid nanoparticles and nanostructured lipid carriers. In: Handbook of Nanoparticles. AliofkhazraeiM. ChamSpringer201611714110.1007/978‑3‑319‑15338‑4_3
    [Google Scholar]
  50. ClogstonJ.D. PatriA.K. Zeta potential measurement.Methods Mol. Biol.2011697637010.1007/978‑1‑60327‑198‑1_6 21116954
    [Google Scholar]
  51. BhattacharjeeS. DLS and zeta potential – What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  52. MüllerR.H. MäderK. GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  53. AlajamiH.N. FouadE.A. AshourA.E. KumarA. YassinA.E.B. Celecoxib-Loaded solid lipid nanoparticles for colon delivery: Formulation optimization and in vitro assessment of anti-cancer activity.Pharmaceutics202214113110.3390/pharmaceutics14010131 35057027
    [Google Scholar]
  54. HuwylerJ. KettigerH. SchipanskiA. WickP. Engineered nanomaterial uptake and tissue distribution: From cell to organism.Int. J. Nanomedicine201383255326910.2147/IJN.S49770 24023514
    [Google Scholar]
  55. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine 201612114316110.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812334601241023113656
Loading
/content/journals/nanoasi/10.2174/0122106812334601241023113656
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test