Skip to content
2000
Volume 14, Issue 6
  • ISSN: 2210-6812
  • E-ISSN: 2210-6820

Abstract

Neurodegenerative disorders (NDs) are one of the prominent worldwide issues recently. Neurodegenerative disorders, like amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington's disease, are characterized by ongoing neuronal failure and loss of structure and function, which ultimately results in neuronal death. There are many established synthetic approaches to target pathogenesis of NDs and to mitigate it but having several challenges researchers are now focusing the significant use of plant derived bio-active constituents against several NDs which ultimately leads safer and potent results. Among these phyto-compounds such as carotenoids, essential oils, essential fatty acids, polyphenols, have attracted great animus due to their strong antioxidant and anti-incendiary properties effective against NDs. Considering these green compounds having significant role to manage various NDs as potent therapeutic approach, we reviewed the sources, application, safety and clinical aspects of phytoconstituents against NDs.

Loading

Article metrics loading...

/content/journals/nanoasi/10.2174/0122106812320650241015153325
2024-10-21
2025-07-07
Loading full text...

Full text loading...

References

  1. AlbadraniH.M. ChauhanP. AshiqueS. BabuM.A. IqbalD. AlmutaryA.G. AbomughaidM.M. KamalM. Paiva-SantosA.C. AlsaweedM. HamedM. SachdevaP. DewanjeeS. JhaS.K. OjhaS. SlamaP. JhaN.K. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer’s disease.Biomed. Pharmacother.202417411637610.1016/j.biopha.2024.116376 38508080
    [Google Scholar]
  2. PoovaiahN. DavoudiZ. PengH. SchlichtmannB. MallapragadaS. NarasimhanB. WangQ. Treatment of neurodegenerative disorders through the blood–brain barrier using nanocarriers.Nanoscale20181036169621698310.1039/C8NR04073G 30182106
    [Google Scholar]
  3. AshiqueS. MohantoS. KumarN. NagS. MishraA. BiswasA. RihanM. SrivastavaS. BhowmickM. Taghizadeh-HesaryF. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview.Eur. J. Pharmacol.202498117690610.1016/j.ejphar.2024.176906 39154829
    [Google Scholar]
  4. AshiqueS. KumarN. MishraN. MuthuS. RajendranR.L. ChandrasekaranB. ObengB.F. HongC.M. KrishnanA. AhnB.C. GangadaranP. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications.Pathol. Res. Pract.202426015545110.1016/j.prp.2024.155451 39002435
    [Google Scholar]
  5. RatheeshG. TianL. VenugopalJ.R. EzhilarasuH. SadiqA. FanT.P. RamakrishnaS. Role of medicinal plants in neurodegenerative diseases.Biomanuf. Rev.201721210.1007/s40898‑017‑0004‑7
    [Google Scholar]
  6. LalotraS. VaghelaJ.S. Scientific reports of medicinal plants used for the prevention and treatment of neurodegenerative diseases.J. Pharm. Biosci.201971152510.20510/ukjpb/7/i1/179297
    [Google Scholar]
  7. Zahir-JouzdaniF. MottaghitalabF. DinarvandM. AtyabiF. siRNA delivery for treatment of degenerative diseases, new hopes and challenges.J. Drug Deliv. Sci. Technol.20184542844110.1016/j.jddst.2018.04.001
    [Google Scholar]
  8. AshiqueS. SirohiE. KumarS. RihanM. MishraN. BhattS. GautamR.K. SinghS.K. GuptaG. ChellappanD.K. DuaK. Aducanumab in Alzheimer’s disease: A critical update.Curr. Med. Chem.2023 37497712
    [Google Scholar]
  9. HashimotoM. HossainS. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: bBAlzheimer’s disease.J. Pharmacol. Sci.2011116215016210.1254/jphs.10R33FM 21606627
    [Google Scholar]
  10. de OliveiraD.M. Ferreira LimaR.M. El-BacháR.S. Brain rust: Recent discoveries on the role of oxidative stress in neurodegenerative diseases.Nutr. Neurosci.20121539410210.1179/1476830511Y.0000000029 22583954
    [Google Scholar]
  11. GirdharS. GirdharA. VermaS.K. LatherV. PanditaD. Plant derived alkaloids in major neurodegenerative diseases: From animal models to clinical trials.J. Ayurvedic Herb. Hed.2015139110010.31254/jahm.2015.1307
    [Google Scholar]
  12. CushnieT.P.T. CushnieB. LambA.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities.Int. J. Antimicrob. Agents201444537738610.1016/j.ijantimicag.2014.06.001 25130096
    [Google Scholar]
  13. WeinsteinG. BeiserA.S. ChoiS.H. PreisS.R. ChenT.C. VorgasD. AuR. PikulaA. WolfP.A. DeStefanoA.L. VasanR.S. SeshadriS. Serum brain-derived neurotrophic factor and the risk for dementia: The Framingham Heart Study.JAMA Neurol.2014711556110.1001/jamaneurol.2013.4781 24276217
    [Google Scholar]
  14. ZareK. EidiA. RoghaniM. RohaniA.H. The neuroprotective potential of sinapic acid in the 6-hydroxydopamine-induced hemi-parkinsonian rat.Metab. Brain Dis.201530120521310.1007/s11011‑014‑9604‑6 25123753
    [Google Scholar]
  15. AhmadS. KhanM.B. HodaM.N. BhatiaK. HaqueR. FaziliI.S. JamalA. KhanJ.S. KatareD.P. Neuroprotective effect of sesame seed oil in 6-hydroxydopamine induced neurotoxicity in mice model: Cellular, biochemical and neurochemical evidence.Neurochem. Res.201237351652610.1007/s11064‑011‑0638‑4 22089932
    [Google Scholar]
  16. AshiqueS. PalR. SharmaH. MishraN. GargA. Unraveling the emerging niche role of Extracellular Vesicles (EVs) in Traumatic Brain Injury (TBI).CNS Neurol. Disord. Drug Targets202423111357137010.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  17. KakinoM. IzutaH. TsurumaK. ArakiY. ShimazawaM. IchiharaK. HaraH. Laxative effects and mechanism of action of Brazilian green propolis.BMC Complement. Altern. Med.201212119210.1186/1472‑6882‑12‑192 23088672
    [Google Scholar]
  18. van der FlierW.M. van den HeuvelD.M.J. Weverling-RijnsburgerA.W.E. SpiltA. BollenE.L.E.M. WestendorpR.G.J. MiddelkoopH.A.M. van BuchemM.A. Cognitive decline in AD and mild cognitive impairment is associated with global brain damage.Neurology200259687487910.1212/WNL.59.6.874 12297570
    [Google Scholar]
  19. SantiagoJ.A. BotteroV. PotashkinJ.A. Dissecting the molecular mechanisms of neurodegenerative diseases through network biology.Front. Aging Neurosci.2017916610.3389/fnagi.2017.00166 28611656
    [Google Scholar]
  20. JellingerK.A. Basic mechanisms of neurodegeneration: A critical update.J. Cell. Mol. Med.201014345748710.1111/j.1582‑4934.2010.01010.x 20070435
    [Google Scholar]
  21. GanL. CooksonM.R. PetrucelliL. La SpadaA.R. Converging pathways in neurodegeneration, from genetics to mechanisms.Nat. Neurosci.201821101300130910.1038/s41593‑018‑0237‑7 30258237
    [Google Scholar]
  22. WarehamL.K. LiddelowS.A. TempleS. BenowitzL.I. Di PoloA. WellingtonC. GoldbergJ.L. HeZ. DuanX. BuG. DavisA.A. ShekharK. TorreA.L. ChanD.C. Canto-SolerM.V. FlanaganJ.G. SubramanianP. RossiS. BrunnerT. BovenkampD.E. CalkinsD.J. Solving neurodegeneration: Common mechanisms and strategies for new treatments.Mol. Neurodegener.20221712310.1186/s13024‑022‑00524‑0 35313950
    [Google Scholar]
  23. AshiqueS. AfzalO. HussainA. ZeyaullahM. AltamimiM.A. MishraN. AhmadM.F. DuaK. AltamimiA.S.A. AnandK. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer.J. Drug Deliv. Sci. Technol.20238410449510.1016/j.jddst.2023.104495
    [Google Scholar]
  24. AshiqueS. PalR. KumarS. VermaB. KumarN. KahwaI. FaridA. MishraN. KumarP. Taghizadeh-HesaryF. Interplay between gut-microbiota and neurodegeneration.In: Advances in Diagnostics and Immunotherapeutics for Neurodegenerative Diseases. MishraA. BajpaiP. AnsariT.M. Bentham Science202410414510.2174/9789815238754124010009
    [Google Scholar]
  25. CaiZ. WangC. YangW. Role of berberine in Alzheimer’s disease.Neuropsychiatr. Dis. Treat.2016122509252010.2147/NDT.S114846 27757035
    [Google Scholar]
  26. KwonJ. SeoY.H. LeeJ.E. SeoE.K. LiS. GuoY. HongS.B. ParkS.Y. LeeD. Spiroindole alkaloids and spiroditerpenoids from Aspergillus duricaulis and their potential neuroprotective effects.J. Nat. Prod.201578112572257910.1021/acs.jnatprod.5b00508 26517152
    [Google Scholar]
  27. NhanH.S. ChiangK. KooE.H. The multifaceted nature of amyloid precursor protein and its proteolytic fragments: Friends and foes.Acta Neuropathol.2015129111910.1007/s00401‑014‑1347‑2 25287911
    [Google Scholar]
  28. PedersenK.F. LarsenJ.P. TysnesO.B. AlvesG. Natural course of mild cognitive impairment in Parkinson disease.Neurology201788876777410.1212/WNL.0000000000003634 28108638
    [Google Scholar]
  29. EghbaliferizS. FarhadiF. BarretoG.E. MajeedM. SahebkarA. Effects of curcumin on neurological diseases: Focus on astrocytes.Pharmacol. Rep.202072476978210.1007/s43440‑020‑00112‑3 32458309
    [Google Scholar]
  30. BaranelloR. BharaniK. PadmarajuV. ChopraN. LahiriD. GreigN. PappollaM. SambamurtiK. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer’s disease.Curr. Alzheimer Res.2015121324610.2174/1567205012666141218140953 25523424
    [Google Scholar]
  31. KamagataK. TomiyamaH. HatanoT. MotoiY. AbeO. ShimojiK. KamiyaK. SuzukiM. HoriM. YoshidaM. HattoriN. AokiS. A preliminary diffusional kurtosis imaging study of Parkinson disease: Comparison with conventional diffusion tensor imaging.Neuroradiology201456325125810.1007/s00234‑014‑1327‑1 24468858
    [Google Scholar]
  32. SchragA. HorsfallL. WaltersK. NoyceA. PetersenI. Prediagnostic presentations of Parkinson’s disease in primary care: A case-control study.Lancet Neurol.2015141576410.1016/S1474‑4422(14)70287‑X 25435387
    [Google Scholar]
  33. PalfiS. GurruchagaJ.M. RalphG.S. LepetitH. LavisseS. ButteryP.C. WattsC. MiskinJ. KelleherM. DeeleyS. IwamuroH. LefaucheurJ.P. ThiriezC. FenelonG. LucasC. BrugièresP. GabrielI. AbhayK. DrouotX. TaniN. KasA. GhalehB. Le CorvoisierP. DolphinP. BreenD.P. MasonS. GuzmanN.V. MazarakisN.D. RadcliffeP.A. HarropR. KingsmanS.M. RascolO. NaylorS. BarkerR.A. HantrayeP. RemyP. CesaroP. MitrophanousK.A. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: A dose escalation, open-label, phase 1/2 trial.Lancet201438399231138114610.1016/S0140‑6736(13)61939‑X 24412048
    [Google Scholar]
  34. BhattacharyaT. SoaresG.A.B. ChopraH. RahmanM.M. HasanZ. SwainS.S. CavaluS. Applications of phyto-nanotechnology for the treatment of neurodegenerative disorders.Materials (Basel)202215380410.3390/ma15030804 35160749
    [Google Scholar]
  35. ViewegS. The role of the polyglutamine and N-terminal domains in regulating the aggregation and structural properties of Huntingtin Exon 1.. Thesis. EPFL,2017
    [Google Scholar]
  36. RecasensA. DehayB. Alpha-synuclein spreading in Parkinson’s disease.Front. Neuroanat.2014815910.3389/fnana.2014.00159 25565982
    [Google Scholar]
  37. SchapiraA.H.V. OlanowC.W. GreenamyreJ.T. BezardE. Slowing of neurodegeneration in Parkinson’s disease and Huntington’s disease: Future therapeutic perspectives.Lancet2014384994254555510.1016/S0140‑6736(14)61010‑2 24954676
    [Google Scholar]
  38. BatesG.P. DorseyR. GusellaJ.F. HaydenM.R. KayC. LeavittB.R. NanceM. RossC.A. ScahillR.I. WetzelR. WildE.J. TabriziS.J. Huntington disease.Nat. Rev. Dis. Primers2015111500510.1038/nrdp.2015.5 27188817
    [Google Scholar]
  39. SepersM.D. RaymondL.A. Mechanisms of synaptic dysfunction and excitotoxicity in Huntington’s disease.Drug Discov. Today201419799099610.1016/j.drudis.2014.02.006 24603212
    [Google Scholar]
  40. SunheY.X. ZhangY.H. FuR.J. XuD.Q. TangY.P. Neuroprotective effect and preparation methods of berberine.Front. Pharmacol.202415142905010.3389/fphar.2024.1429050
    [Google Scholar]
  41. MartinD.D.O. LadhaS. EhrnhoeferD.E. HaydenM.R. Autophagy in Huntington disease and huntingtin in autophagy.Trends Neurosci.2015381263510.1016/j.tins.2014.09.003 25282404
    [Google Scholar]
  42. LeighP.N. AbrahamsS. Al-ChalabiA. AmpongM.A. GoldsteinL.H. JohnsonJ. LyallR. MoxhamJ. MustfaN. RioA. ShawC. WilleyE. The management of motor neurone disease.J. Neurol. Neurosurg. Psychiatry200374Suppl. 4iv32iv47 14645465
    [Google Scholar]
  43. HsuY.T. ChangY.G. ChernY. Insights into GABA A ergic system alteration in Huntington’s disease.Open Biol.201881218016510.1098/rsob.180165 30518638
    [Google Scholar]
  44. ManzoE. O’ConnerA.G. BarrowsJ.M. ShreinerD.D. BirchakG.J. ZarnescuD.C. Medium-chain fatty acids, beta-hydroxybutyric acid and genetic modulation of the carnitine shuttle are protective in a drosophila model of ALS based on TDP-43.Front. Mol. Neurosci.20181118210.3389/fnmol.2018.00182 29904341
    [Google Scholar]
  45. KiernanM.C. VucicS. CheahB.C. TurnerM.R. EisenA. HardimanO. BurrellJ.R. ZoingM.C. Amyotrophic lateral sclerosis.Lancet2011377976994295510.1016/S0140‑6736(10)61156‑7 21296405
    [Google Scholar]
  46. KutzelniggA. LassmannH. Pathology of multiple sclerosis and related inflammatory demyelinating diseases.Handb. Clin. Neurol.2014122155810.1016/B978‑0‑444‑52001‑2.00002‑9 24507512
    [Google Scholar]
  47. PolmanC.H. ReingoldS.C. BanwellB. ClanetM. CohenJ.A. FilippiM. FujiharaK. HavrdovaE. HutchinsonM. KapposL. LublinF.D. MontalbanX. O’ConnorP. Sandberg-WollheimM. ThompsonA.J. WaubantE. WeinshenkerB. WolinskyJ.S. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria.Ann. Neurol.201169229230210.1002/ana.22366 21387374
    [Google Scholar]
  48. FünfschillingU. SupplieL.M. MahadD. BoretiusS. SaabA.S. EdgarJ. BrinkmannB.G. KassmannC.M. TzvetanovaI.D. MöbiusW. DiazF. MeijerD. SuterU. HamprechtB. SeredaM.W. MoraesC.T. FrahmJ. GoebbelsS. NaveK.A. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity.Nature2012485739951752110.1038/nature11007 22622581
    [Google Scholar]
  49. ScalfariA. NeuhausA. DaumerM. MuraroP.A. EbersG.C. Onset of secondary progressive phase and long-term evolution of multiple sclerosis.J. Neurol. Neurosurg. Psychiatry2013851677510.1136/jnnp‑2012‑304333 23486991
    [Google Scholar]
  50. KimS.M. ParkY.J. ShinM.S. KimH.R. KimM.J. LeeS.H. YunS.P. KwonS.H. Acacetin inhibits neuronal cell death induced by 6-hydroxydopamine in cellular Parkinson’s disease model.Bioorg. Med. Chem. Lett.201727235207521210.1016/j.bmcl.2017.10.048 29089232
    [Google Scholar]
  51. AhirwarS. TembhreM. GourS. NamdeoA. Anticholinesterase efficacy of Bacopa monnieri against the brain regions of rat - A novel approach to therapy for Alzheimer’s disease.Asian J. Exp. Sci.20122616570
    [Google Scholar]
  52. DeyA. BhattacharyaR. MukherjeeA. PandeyD.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions.Biotechnol. Adv.201735217821610.1016/j.biotechadv.2016.12.005 28043897
    [Google Scholar]
  53. SowndhararajanK. DeepaP. KimM. ParkS.J. KimS. Baicalein as a potent neuroprotective agent: A review.Biomed. Pharmacother.2017951021103210.1016/j.biopha.2017.08.135 28922719
    [Google Scholar]
  54. LeeH.W. RyuH.W. KangM.G. ParkD. LeeH. ShinH.M. OhS.R. KimH. Potent inhibition of monoamine oxidase A by decursin from Angelica gigas Nakai and by wogonin from Scutellaria baicalensis Georgi.Int. J. Biol. Macromol.20179759860510.1016/j.ijbiomac.2017.01.080 28109809
    [Google Scholar]
  55. GregoryJ. VengalasettiY.V. BredesenD.E. RaoR.V. Neuroprotective herbs for the management of Alzheimer’s disease.Biomolecules202111454310.3390/biom11040543 33917843
    [Google Scholar]
  56. LaritF. ElokelyK.M. ChaurasiyaN.D. BenyahiaS. NaelM.A. LeónF. Abu-DarwishM.S. EfferthT. WangY.H. Belouahem-AbedD. BenayacheS. TekwaniB.L. CutlerS.J. Inhibition of human monoamine oxidase A and B by flavonoids isolated from two Algerian medicinal plants.Phytomedicine201840273610.1016/j.phymed.2017.12.032 29496172
    [Google Scholar]
  57. PangM. PengR. WangY. ZhuY. WangP. MoussianB. SuY. LiuX. MingD. Molecular understanding of the translational models and the therapeutic potential natural products of Parkinson’s disease.Biomed. Pharmacother.202215511371810.1016/j.biopha.2022.113718 36152409
    [Google Scholar]
  58. ChakrabortyS. BandyopadhyayJ. ChakrabortyS. BasuS. Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer’s disease therapeutics.Eur. J. Med. Chem.201612181082210.1016/j.ejmech.2016.03.057 27068363
    [Google Scholar]
  59. TambeR. PatilA. JainP. SanchetiJ. SomaniG. SathayeS. Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy.Pharm. Biol.201755126426810.1080/13880209.2016.1260597 27927066
    [Google Scholar]
  60. ChangC.L. LinC.S. LaiG.H. Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts.Evid. Based Complement. Alternat. Med.2012201211810.1155/2012/984295 21845204
    [Google Scholar]
  61. SharmaR. GargN. VermaD. RathiP. SharmaV. KucaK. PrajapatiP.K. Chapter 4 - Indian medicinal plants as drug leads in neurodegenerative disorders.In: Nutraceuticals in Brain Health and Beyond. Academic Press 2021314510.1016/B978‑0‑12‑820593‑8.00004‑5
    [Google Scholar]
  62. VannurA. BiradarP.R. PatilV. Experimental validation of Vitex negundo leaves hydroalcoholic extract for neuroprotection in haloperidol induced parkinson’s disease in rat.Metab. Brain Dis.202237241142610.1007/s11011‑021‑00878‑2 35023027
    [Google Scholar]
  63. KamkaenN. ChittasuphoC. VoraratS. TadtongS. PhrompittayaratW. OkonogiS. KwankhaoP. Mucuna pruriens seed aqueous extract improved neuroprotective and acetylcholinesterase inhibitory effects compared with synthetic L-dopa.Molecules20222710313110.3390/molecules27103131 35630617
    [Google Scholar]
  64. SharmaR. SinglaR.K. BanerjeeS. SinhaB. ShenB. SharmaR. Role of Shankhpushpi (Convolvulus pluricaulis) in neurological disorders: An umbrella review covering evidence from ethnopharmacology to clinical studies.Neurosci. Biobehav. Rev.202214010479510.1016/j.neubiorev.2022.104795 35878793
    [Google Scholar]
  65. GulM. LiuZ.W. Iahtisham-Ul-Haq; Rabail, R.; Faheem, F.; Walayat, N.; Nawaz, A.; Shabbir, M.A.; Munekata, P.E.S.; Lorenzo, J.M.; Aadil, R.M. Functional and nutraceutical significance of Amla (Phyllanthus emblica L.): A review.Antioxidants202211581610.3390/antiox11050816 35624683
    [Google Scholar]
  66. Veerendra KumarM.H. GuptaY.K. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats.J. Ethnopharmacol.200279225326010.1016/S0378‑8741(01)00394‑4 11801389
    [Google Scholar]
  67. AsgharH.A. AbbasS.Q. ArshadM.K. JabinA. UsmanB. AslamM. AsgharA. Therapeutic Potential of Azadirachta indica (Neem)-A Comprehensive Review.Sch. Int. J. Tradit. Complement. Med.202253476410.36348/sijtcm.2022.v05i03.001
    [Google Scholar]
  68. CianciulliA. CalvelloR. RuggieroM. PanaroM.A. Inflammaging and brain: Curcumin and its beneficial potential as regulator of microglia activation.Molecules202227234110.3390/molecules27020341 35056657
    [Google Scholar]
  69. GuY. ChenJ. ShenJ. Herbal medicines for ischemic stroke: Combating inflammation as therapeutic targets.J. Neuroimmune Pharmacol.20149331333910.1007/s11481‑014‑9525‑5 24562591
    [Google Scholar]
  70. PohlF. Kong Thoo LinP. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials.Molecules20182312328310.3390/molecules23123283 30544977
    [Google Scholar]
  71. MahdyK. ShakerO. WafayH. NassarY. HassanH. HusseinA. Effect of some medicinal plant extracts on the oxidative stress status in Alzheimer’s disease induced in rats.Eur. Rev. Med. Pharmacol. Sci.201216Suppl. 33142 22957416
    [Google Scholar]
  72. DasA. ShankerG. NathC. PalR. SinghS. SinghH.K. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba.Pharmacol. Biochem. Behav.200273489390010.1016/S0091‑3057(02)00940‑1 12213536
    [Google Scholar]
  73. El-HoranyH.E. El-latifR.N.A. ElBatshM.M. EmamM.N. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: Modulating autophagy (quercetin on experimental Parkinson’s disease).J. Biochem. Mol. Toxicol.201630736036910.1002/jbt.21821 27252111
    [Google Scholar]
  74. AyM. LuoJ. LangleyM. JinH. AnantharamV. KanthasamyA. KanthasamyA.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease.J. Neurochem.2017141576678210.1111/jnc.14033 28376279
    [Google Scholar]
  75. CostaL.G. GarrickJ.M. RoquèP.J. PellacaniC. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress and more.Oxid. Med. Cell. Longev.20162016298679610.1155/2016/2986796 26904161
    [Google Scholar]
  76. CostaS.L. SilvaV.D.A. dos Santos SouzaC. SantosC.C. ParisI. MuñozP. Segura-AguilarJ. Impact of plant-derived flavonoids on neurodegenerative diseases.Neurotox. Res.2016301415210.1007/s12640‑016‑9600‑1 26951456
    [Google Scholar]
  77. Meng-zhenS. JuL. Lan-chunZ. Cai-fengD. Shu-daY. Hao-feiY. Wei-yanH. Potential therapeutic use of plant flavonoids in AD and PD.Heliyon2022811e1144010.1016/j.heliyon.2022.e11440 36387565
    [Google Scholar]
  78. RatherM.A. KhanA. AlshahraniS. RashidH. QadriM. RashidS. AlsaffarR.M. KamalM.A. RehmanM.U. Inflammation and Alzheimer’s disease: Mechanisms and therapeutic implications by natural products.Mediators Inflamm.20212021112110.1155/2021/9982954 34381308
    [Google Scholar]
  79. ZbarskyV. DatlaK.P. ParkarS. RaiD.K. AruomaO.I. DexterD.T. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease.Free Radic. Res.200539101119112510.1080/10715760500233113 16298737
    [Google Scholar]
  80. GhofraniS. JoghataeiM.T. MohseniS. BaluchnejadmojaradT. BagheriM. KhamseS. RoghaniM. Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms.Eur. J. Pharmacol.201576419520110.1016/j.ejphar.2015.07.001 26148826
    [Google Scholar]
  81. AzizaS.A.H. AzabM.E. El-ShallS.K. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.Pak. J. Biol. Sci.201417896497710.3923/pjbs.2014.964.977 26031015
    [Google Scholar]
  82. EnogieruA.B. HaylettW. HissD.C. BardienS. EkpoO.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders.Oxid. Med. Cell. Longev.201820181624101710.1155/2018/6241017 30050657
    [Google Scholar]
  83. AzevedoM.I. PereiraA.F. NogueiraR.B. RolimF.E. BritoG.A.C. WongD.V.T. Lima-JúniorR.C.P. de Albuquerque RibeiroR. ValeM.L. The antioxidant effects of the flavonoids rutin and quercetin inhibit oxaliplatin-induced chronic painful peripheral neuropathy.Mol. Pain 201391744-80699-5310.1186/1744‑8069‑9‑5324152430
    [Google Scholar]
  84. ElufioyeT.O. BeridaT.I. HabtemariamS. Plants-derived neuroprotective agents: Cutting the cycle of cell death through multiple mechanisms.Evid. Based Complement. Alternat. Med.20172017357401210.1155/2017/3574012 28904554
    [Google Scholar]
  85. WightmanE.L. Potential benefits of phytochemicals against Alzheimer’s disease.Proc. Nutr. Soc.201776210611210.1017/S0029665116002962 28143625
    [Google Scholar]
  86. ConteA. PellegriniS. TagliazucchiD. Synergistic protection of PC12 cells from β-amyloid toxicity by resveratrol and catechin.Brain Res. Bull.2003621293810.1016/j.brainresbull.2003.08.001 14596889
    [Google Scholar]
  87. ImenshahidiM. QaredashiR. HashemzaeiM. HosseinzadehH. Inhibitory effect of Berberis vulgaris aqueous extract on acquisition and reinstatement effects of morphine in conditioned place preferences (CPP) in mice.Jundishapur J. Nat. Pharm. Prod.201493e1614510.17795/jjnpp‑16145 25237645
    [Google Scholar]
  88. JinY. KhadkaD.B. ChoW.J. Pharmacological effects of berberine and its derivatives:A patent update.Expert Opin. Ther. Pat.201626222924310.1517/13543776.2016.1118060 26610159
    [Google Scholar]
  89. JiangW. LiS. LiX. Therapeutic potential of berberine against neurodegenerative diseases.Sci. China Life Sci.201558656456910.1007/s11427‑015‑4829‑0 25749423
    [Google Scholar]
  90. JiangW. WeiW. GaertigM.A. LiS. LiX.J. Therapeutic effect of berberine on Huntington’s disease transgenic mouse model.PLoS One2015107e013414210.1371/journal.pone.0134142 26225560
    [Google Scholar]
  91. MittalR.P. JaitakV. Plant-derived natural alkaloids as new antimicrobial and adjuvant agents in existing antimicrobial therapy.Curr. Drug Targets201920141409143310.2174/1389450120666190618124224 31215387
    [Google Scholar]
  92. YeD. BuH. GuoG. ShuB. WangW. GuanX. YangH. TianX. XiangH. GaoF. Activation of CXCL10/CXCR3 signaling attenuates morphine analgesia: Involvement of Gi protein.J. Mol. Neurosci.201453457157910.1007/s12031‑013‑0223‑1 24415274
    [Google Scholar]
  93. CuiJ. WangY. DongQ. WuS. XiaoX. HuJ. ChaiZ. ZhangY. Morphine protects against intracellular amyloid toxicity by inducing estradiol release and upregulation of Hsp70.J. Neurosci.20113145162271624010.1523/JNEUROSCI.3915‑11.2011 22072674
    [Google Scholar]
  94. MojaradT.B. RoghaniM. The anticonvulsant and antioxidant effects of berberine in kainate-induced temporal lobe epilepsy in rats.Basic Clin. Neurosci.201452124130 25337370
    [Google Scholar]
  95. ZhuH.L. WanJ.B. WangY.T. LiB.C. XiangC. HeJ. LiP. Medicinal compounds with antiepileptic/anticonvulsant activities.Epilepsia201455131610.1111/epi.12463 24299155
    [Google Scholar]
  96. Ferreira-VieiraT.H. GuimaraesI.M. SilvaF.R. RibeiroF.M. Alzheimer’s disease: Targeting the cholinergic system.Curr. Neuropharmacol.201614110111510.2174/1570159X13666150716165726 26813123
    [Google Scholar]
  97. RaskindM.A. PeskindE.R. WesselT. YuanW. Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. The galantamine USA-1 study group.Neurology200054122261226810.1212/WNL.54.12.2261 10881250
    [Google Scholar]
  98. FuentealbaJ. Saez-OrellanaF. Neuroactive alkaloids that modulate the neuronal nicotinic receptor and provide neuroprotection in an Alzheimer′s disease model: the case of Teline monspessulana.Neural Regen. Res.20149211880188110.4103/1673‑5374.145349 25558235
    [Google Scholar]
  99. Dall’AcquaS. Plant-derived acetylcholinesterase inhibitory alkaloids for the treatment of Alzheimer’s disease.Botanics20133192810.2147/BTAT.S17297
    [Google Scholar]
  100. ReinaM. Ruiz-MesiaW. López-RodríguezM. Ruiz-MesiaL. González-ColomaA. Martínez-DíazR. Indole alkaloids from Geissospermum reticulatum.J. Nat. Prod.201275592893410.1021/np300067m 22551062
    [Google Scholar]
  101. VitalM.J. CarneiroA.L. SilvaL.F. AmorimR.C. CamargoM.R. PohlitA.M. Chemical composition, ethnopharmacology and biological activity of Geissospermum Allemão species (Apocynaceae juss.).Revista Fitos201582137146
    [Google Scholar]
  102. ShaikhS. VermaA. SiddiquiS. Current acetylcholinesterase-inhibitors: A neuroinformatics perspective.CNS Neurol. Disord. Drug Targets201413339140110.2174/18715273113126660166 24059296
    [Google Scholar]
  103. OrhanG. OrhanI. Subutay-OztekinN. AkF. SenerB. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease.Recent Patents CNS Drug Discov.200941435110.2174/157488909787002582 19149713
    [Google Scholar]
  104. WadhwaS. SinghalS. RawatS. Bioavailability enhancement by piperine: A review.Asian J. Biomed. Pharm. Sci.2014418
    [Google Scholar]
  105. LiC.Y. ZhaoL.M. ShiX.I.W.E.N. ZhangJ.D. Lobeline shows protective effects against MPTP-induced dopaminergic neuron death and attenuates behavior deficits in animals.Exp. Ther. Med.20147237537810.3892/etm.2013.1413 24396408
    [Google Scholar]
  106. AkaikeA. Takada-TakatoriY. KumeT. IzumiY. Mechanisms of neuroprotective effects of nicotine and acetylcholinesterase inhibitors: Role of α4 and α7 receptors in neuroprotection.J. Mol. Neurosci.2010401-221121610.1007/s12031‑009‑9236‑1 19714494
    [Google Scholar]
  107. BarretoG.E. IarkovA. MoranV.E. Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson’s disease.Front. Aging Neurosci.2015634010.3389/fnagi.2014.00340 25620929
    [Google Scholar]
  108. SharmaN. NehruB. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model.Inflammopharmacology201826234936010.1007/s10787‑017‑0402‑8 29027056
    [Google Scholar]
  109. MohseniM. SahebkarA. AskariG. JohnstonT.P. AlikiaiiB. BagherniyaM. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials.Phytother. Res.202135126862688210.1002/ptr.7273 34528307
    [Google Scholar]
  110. YuT. DohlJ. WangL. ChenY. GasierH.G. DeusterP.A. Curcumin ameliorates heat-induced injury through NADPH oxidase–dependent redox signaling and mitochondrial preservation in C2C12 myoblasts and mouse skeletal muscle.J. Nutr.202015092257226710.1093/jn/nxaa201 32692359
    [Google Scholar]
  111. BanjiO.J.F. BanjiD.Ch. K.Curcumin and hesperidin improve cognition by suppressing mitochondrial dysfunction and apoptosis induced by D-galactose in rat brain.Food Chem. Toxicol.201474515910.1016/j.fct.2014.08.020 25217884
    [Google Scholar]
  112. LimG.P. ChuT. YangF. BeechW. FrautschyS.A. ColeG.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse.J. Neurosci.200121218370837710.1523/JNEUROSCI.21‑21‑08370.2001 11606625
    [Google Scholar]
  113. NieL. XiaJ. LiH. ZhangZ. YangY. HuangX. HeZ. LiuJ. YangX. Ginsenoside Rg1 ameliorates behavioral abnormalities and modulates the hippocampal proteomic change in triple transgenic mice of Alzheimer’s disease.Oxid. Med. Cell. Longev.201720171647350610.1155/2017/6473506 29204248
    [Google Scholar]
  114. ZhangY.L. LiuY. KangX.P. DouC.Y. ZhuoR.G. HuangS.Q. PengL. WenL. Ginsenoside Rb1 confers neuroprotection via promotion of glutamate transporters in a mouse model of Parkinson’s disease.Neuropharmacology201813122323710.1016/j.neuropharm.2017.12.012 29241654
    [Google Scholar]
  115. AbbottN.J. RönnbäckL. HanssonE. Astrocyte–endothelial interactions at the blood–brain barrier.Nat. Rev. Neurosci.200671415310.1038/nrn1824 16371949
    [Google Scholar]
  116. AbbottN.J. PatabendigeA.A.K. DolmanD.E.M. YusofS.R. BegleyD.J. Structure and function of the blood–brain barrier.Neurobiol. Dis.2010371132510.1016/j.nbd.2009.07.030 19664713
    [Google Scholar]
  117. WolburgH. Wolburg-BuchholzK. KrausJ. Rascher-EggsteinG. LiebnerS. HammS. DuffnerF. GroteE.H. RisauW. EngelhardtB. Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme.Acta Neuropathol.2003105658659210.1007/s00401‑003‑0688‑z 12734665
    [Google Scholar]
  118. PalmerA.M. The role of the blood brain barrier in neurodegenerative disorders and their treatment.J. Alzheimers Dis.201124464365610.3233/JAD‑2011‑110368 21460432
    [Google Scholar]
  119. MagalingamK.B. RadhakrishnanA. PingN.S. HaleagraharaN. Current concepts of neurodegenerative mechanisms in Alzheimer’s disease.Biomed Res. Int.20182018374046110.1155/2018/3740461 29707568
    [Google Scholar]
  120. RochaE.M. De MirandaB. SandersL.H. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis.2018109Pt B24925710.1016/j.nbd.2017.04.00428400134
    [Google Scholar]
  121. AnandA. PatienceA.A. SharmaN. KhuranaN. The present and future of pharmacotherapy of Alzheimer’s disease: A comprehensive review.Eur. J. Pharmacol.201781536437510.1016/j.ejphar.2017.09.043 28978455
    [Google Scholar]
  122. CarmonaV. Martín-AragónS. GoldbergJ. SchubertD. Bermejo-BescósP. Several targets involved in Alzheimer’s disease amyloidogenesis are affected by morin and isoquercitrin.Nutr. Neurosci.202023857559010.1080/1028415X.2018.1534793 30326823
    [Google Scholar]
  123. ReddyP.H. ManczakM. YinX. GradyM.C. MitchellA. TonkS. KuruvaC.S. BhattiJ.S. KandimallaR. VijayanM. KumarS. WangR. PradeepkiranJ.A. OgunmokunG. ThamaraiK. QuesadaK. BolesA. ReddyA.P. Protective effects of Indian spice curcumin against amyloid-β in Alzheimer’s disease.J. Alzheimers Dis.201861384386610.3233/JAD‑170512 29332042
    [Google Scholar]
  124. ZhangH. BaiL. HeJ. ZhongL. DuanX. OuyangL. ZhuY. WangT. ZhangY. ShiJ. Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds.Eur. J. Med. Chem.201714125727210.1016/j.ejmech.2017.09.068
    [Google Scholar]
  125. HussainG. ZhangL. RasulA. AnwarH. SohailM.U. RazzaqA. AzizN. ShabbirA. AliM. SunT. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data.Molecules201823481410.3390/molecules23040814 29614843
    [Google Scholar]
  126. FinleyJ.W. GaoS. A perspective on Crocus sativus L.(Saffron) constituent crocin: A potent water-soluble antioxidant and potential therapy for Alzheimer’s disease.J. Agric. Food Chem.20176551005102010.1021/acs.jafc.6b04398 28098452
    [Google Scholar]
  127. WangX. MichaelisE.K. Selective neuronal vulnerability to oxidative stress in the brain.Front. Aging Neurosci.201021210.3389/fnagi.2010.00012 20552050
    [Google Scholar]
  128. PadureanuR. AlbuC.V. MititeluR.R. BacanoiuM.V. DoceaA.O. CalinaD. PadureanuV. OlaruG. SanduR.E. MalinR.D. BugaA.M. Oxidative stress and inflammation interdependence in multiple sclerosis.J. Clin. Med.2019811181510.3390/jcm8111815 31683787
    [Google Scholar]
  129. LoveS. Oxidative stress in brain ischemia.Brain Pathol.19999111913110.1111/j.1750‑3639.1999.tb00214.x 9989455
    [Google Scholar]
  130. BlesaJ. Trigo-DamasI. Quiroga-VarelaA. Jackson-LewisV.R. Oxidative stress and Parkinson’s disease.Front. Neuroanat.201599110.3389/fnana.2015.00091 26217195
    [Google Scholar]
  131. OladeleJ.O. OyelekeO.M. OladeleO.T. OlaniyanM. Neuroprotective mechanism of Vernonia amygdalina in a rat model of neurodegenerative diseases.Toxicol. Rep.202071223123210.1016/j.toxrep.2020.09.005 32995297
    [Google Scholar]
  132. JennerP. Oxidative stress in Parkinson’s disease.Ann. Neurol.200353Suppl. 3S26S3810.1002/ana.10483 12666096
    [Google Scholar]
  133. SalehiB. Lopez-JornetP. Pons-Fuster LópezE. CalinaD. Sharifi-RadM. Ramírez-AlarcónK. FormanK. FernándezM. MartorellM. SetzerW. MartinsN. RodriguesC. Sharifi-RadJ. Plant-derived bioactives in oral mucosal lesions: a key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties.Biomolecules20199310610.3390/biom9030106 30884918
    [Google Scholar]
  134. NatarajJ. ManivasagamT. ThenmozhiA.J. EssaM.M. Neuroprotective effect of asiatic acid on rotenone-induced mitochondrial dysfunction and oxidative stress-mediated apoptosis in differentiated SH-SYS5Y cells.Nutr. Neurosci.20635135910.1080/1028415X.2015.1135559 26856988
    [Google Scholar]
  135. ShalB. DingW. AliH. KimY.S. KhanS. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease.Front. Pharmacol.2018954810.3389/fphar.2018.00548 29896105
    [Google Scholar]
  136. SivananthamB. KrishnanU. RajendiranV. Amelioration of oxidative stress in differentiated neuronal cells by rutin regulated by a concentration switch.Biomed. Pharmacother.2018108152610.1016/j.biopha.2018.09.021 30212708
    [Google Scholar]
  137. NabaviS.F. SuredaA. HabtemariamS. NabaviS.M. Ginsenoside Rd and ischemic stroke; A short review of literatures.J. Ginseng Res.201539429930310.1016/j.jgr.2015.02.002 26869821
    [Google Scholar]
  138. AnY.W. JhangK.A. WooS-Y. KangJ.L. ChongY.H. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages.Neurobiol. Aging20163811010.1016/j.neurobiolaging.2015.10.016 26827637
    [Google Scholar]
  139. Van KampenJ.M. BaranowskiD.B. ShawC.A. KayD.G. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease.Exp. Gerontol.2014509510510.1016/j.exger.2013.11.012 24316034
    [Google Scholar]
  140. ZippF. AktasO. The brain as a target of inflammation: Common pathways link inflammatory and neurodegenerative diseases.Trends Neurosci.200629951852710.1016/j.tins.2006.07.006 16879881
    [Google Scholar]
  141. SalehiB. Shivaprasad ShettyM. V Anil Kumar, N.; Živković, J.; Calina, D.; Oana Docea, A.; Emamzadeh-Yazdi, S.; Sibel Kılıç, C.; Goloshvili, T.; Nicola, S.; Pignata, G.; Sharopov, F.; Del Mar Contreras, M.; Cho, W.C.; Martins, N.; Sharifi-Rad, J. Veronica plants-drifting from farm to traditional healing, food application, and phytopharmacology.Molecules20192413245410.3390/molecules24132454 31277407
    [Google Scholar]
  142. WichaP. TocharusJ. JanyouA. JittiwatJ. ChangtamC. SuksamrarnA. TocharusC. Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model.PLoS One20171212e018921110.1371/journal.pone.0189211 29220411
    [Google Scholar]
  143. GaireB.P. Herbal medicine in ischemic stroke: Challenges and prospective.Chin. J. Integr. Med.201824424324610.1007/s11655‑018‑2828‑2 29696521
    [Google Scholar]
  144. WangJ. SongY. ChenZ. LengS.X. Connection between systemic inflammation and neuroinflammation underlies neuroprotective mechanism of several phytochemicals in neurodegenerative diseases.Oxid. Med. Cell. Longev.20182018197271410.1155/2018/1972714 30402203
    [Google Scholar]
  145. IanoşiS. IanoşiG. NeagoeD. IonescuO. ZlatianO. DoceaA.O. BadiuC. SifakiM. TsoukalasD. TsatsakisA.M. SpandidosD.A. CălinaD. Age-dependent endocrine disorders involved in the pathogenesis of refractory acne in women.Mol. Med. Rep.20161465501550610.3892/mmr.2016.5924 27840992
    [Google Scholar]
  146. AkinmoladunA.C. AkinrinolaB.L. OlaleyeM.T. FarombiE.O. Kolaviron, a Garcinia kola biflavonoid complex, protects against ischemia/reperfusion injury: Pertinent mechanistic insights from biochemical and physical evaluations in rat brain.Neurochem. Res.201540477778710.1007/s11064‑015‑1527‑z 25638229
    [Google Scholar]
  147. LiuZ. RanY. HuangS. WenS. ZhangW. LiuX. JiZ. GengX. JiX. DuH. LeakR.K. HuX. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization.Front. Aging Neurosci.2017923310.3389/fnagi.2017.00233 28785217
    [Google Scholar]
  148. DurãesF. PintoM. SousaE. Old drugs as new treatments for neurodegenerative diseases.Pharmaceuticals (Basel)20181124410.3390/ph11020044 29751602
    [Google Scholar]
  149. FinbergJ.P.M. RabeyJ.M. Inhibitors of MAO-A and MAO-B in psychiatry and neurology.Front. Pharmacol.2016734010.3389/fphar.2016.00340 27803666
    [Google Scholar]
  150. ChimentiF. CottigliaF. BonsignoreL. CasuL. CasuM. FlorisC. SecciD. BolascoA. ChimentiP. GraneseA. BefaniO. TuriniP. AlcaroS. OrtusoF. TrombettaG. LoizzoA. GuarinoI. Quercetin as the active principle of Hypericum hircinum exerts a selective inhibitory activity against MAO-A: Extraction, biological analysis, and computational study.J. Nat. Prod.200669694594910.1021/np060015w 16792415
    [Google Scholar]
  151. CarradoriS. PetzerJ.P. Novel monoamine oxidase inhibitors: A patent review (2012 – 2014).Expert Opin. Ther. Pat.20152519111010.1517/13543776.2014.982535 25399762
    [Google Scholar]
  152. ZanforlinE. ZagottoG. RibaudoG. The medicinal chemistry of natural and semisynthetic compounds against Parkinson’s and Huntington’s diseases.ACS Chem. Neurosci.20178112356236810.1021/acschemneuro.7b00283 28862431
    [Google Scholar]
  153. HuangL. WangS. MaF. ZhangY. PengY. XingC. FengY. WangX. PengY. From stroke to neurodegenerative diseases: The multi-target neuroprotective effects of 3-n-butylphthalide and its derivatives.Pharmacol. Res.201813520121110.1016/j.phrs.2018.08.007 30103000
    [Google Scholar]
  154. WojciechowskiV.V. CalinaD. TsarouhasK. PivnikA.V. SergievichA.A. KodintsevV.V. FilatovaE.A. A guide to acquired vitamin K coagulopathy diagnosis and treatment: The Russian perspective.Daru2511010.1186/s40199‑017‑0175‑z 28416008
    [Google Scholar]
  155. LimanaqiF. BiagioniF. MastroiacovoF. PolzellaM. LazzeriG. FornaiF. Merging the multi-target effects of phytochemicals in neurodegeneration: From oxidative stress to protein aggregation and inflammation.Antioxidants2020910102210.3390/antiox9101022 33092300
    [Google Scholar]
  156. PeerzadaA.M. AliH.H. NaeemM. LatifM. BukhariA.H. TanveerA. Cyperus rotundus L.: Traditional uses, phytochemistry, and pharmacological activities.J. Ethnopharmacol.201517454056010.1016/j.jep.2015.08.012 26297840
    [Google Scholar]
  157. HandinR.I. The history of antithrombotic therapy: The discovery of heparin, the vitamin K antagonists, and the utility of aspirin.Hematol. Oncol. Clin. North Am.201630598799310.1016/j.hoc.2016.06.002 27637302
    [Google Scholar]
  158. CopelandC.E. SixC.K. A tale of two anticoagulants: Warfarin and heparin.J. Surg. Educ.200966317618110.1016/j.jsurg.2009.03.035 19712919
    [Google Scholar]
  159. ChenC. YangF.Q. ZhangQ. WangF.Q. HuY.J. XiaZ.N. Natural products for antithrombosis.Evid. Based Complement. Alternat. Med.2015201587642610.1155/2015/876426 26075003
    [Google Scholar]
  160. SantosG. Giraldez-AlvarezL.D. Ávila-RodriguezM. CapaniF. GalembeckE. NetoA.G. BarretoG.E. AndradeB. SUR1 receptor interaction with hesperidin and linarin predicts possible mechanisms of action of Valeriana officinalis in Parkinson.Front. Aging Neurosci.201689710.3389/fnagi.2016.00097 27199743
    [Google Scholar]
  161. KaufmannD. Kaur DograA. TahraniA. HerrmannF. WinkM. Extracts from traditional Chinese medicinal plants inhibit acetylcholinesterase, a known Alzheimer’s disease target.Molecules2016219116110.3390/molecules21091161 27589716
    [Google Scholar]
  162. BertoncelloK.T. AguiarG.P.S. OliveiraJ.V. SiebelA.M. Micronization potentiates curcumin’s anti-seizure effect and brings an important advance in epilepsy treatment.Sci. Rep.201881264510.1038/s41598‑018‑20897‑x 29422541
    [Google Scholar]
  163. AshiqueS. AfzalO. YasminS. HussainA. AltamimiM.A. WebsterT.J. AltamimiA.S.A. Strategic nanocarriers to control neurodegenerative disorders: Concept, challenges, and future perspective.Int. J. Pharm.202363312261410.1016/j.ijpharm.2023.122614 36646255
    [Google Scholar]
  164. FigueiredoC.P. BiccaM.A. LatiniA. PredigerR.D.S. MedeirosR. CalixtoJ.B. Folic acid plus α-tocopherol mitigates amyloid-β-induced neurotoxicity through modulation of mitochondrial complexes activity.J. Alzheimers Dis.2011241617510.3233/JAD‑2010‑101320 21157027
    [Google Scholar]
  165. MorrisM.C. EvansD.A. TangneyC.C. BieniasJ.L. WilsonR.S. AggarwalN.T. ScherrP.A. Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change.Am. J. Clin. Nutr.200581250851410.1093/ajcn.81.2.508 15699242
    [Google Scholar]
  166. Ojea-JiménezI. BastúsN.G. PuntesV. Influence of the sequence of the reagents addition in the citrate-mediated synthesis of gold nanoparticles.J. Phys. Chem. C201111532157521575710.1021/jp2017242
    [Google Scholar]
  167. AshiqueS. KumarS. RihanM. GargA. Toxicological profile of nutraceutical supplements.. In: Synbiotics in Human Health: Biology to Drug Delivery; Spriger: Singapore,202462964610.1007/978‑981‑99‑5575‑6_32
    [Google Scholar]
  168. PangQ.Q. KimJ.H. ChoiJ.M. SongJ.L. LeeS. ChoE.J. Cirsium japonicum var. Maackii improves cognitive impairment under amyloid beta25-35-induced Alzheimer’s disease model.BioMed Res. Int.20222022111110.1155/2022/4513998 35036433
    [Google Scholar]
  169. TakedaA. NyssenO.P. SyedA. JansenE. Bueno-de-MesquitaB. GalloV. Vitamin A and carotenoids and the risk of Parkinson’s disease: A systematic review and meta-analysis.Neuroepidemiology2014421253810.1159/000355849 24356061
    [Google Scholar]
  170. OvaisM. ZiaN. AhmadI. KhalilA.T. RazaA. AyazM. SadiqA. UllahF. ShinwariZ.K. Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: Present status and future opportunities.Front. Aging Neurosci.20181028410.3389/fnagi.2018.00284 30405389
    [Google Scholar]
  171. NiuX. ChenJ. GaoJ. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances.Asian J. Pharm. Sci.201914548049610.1016/j.ajps.2018.09.005 32104476
    [Google Scholar]
  172. TeleanuD.M. NegutI. GrumezescuV. GrumezescuA.M. TeleanuR.I. Nanomaterials for drug delivery to the central nervous system.Nanomaterials (Basel)20199337110.3390/nano9030371 30841578
    [Google Scholar]
  173. SaraivaC. PraçaC. FerreiraR. SantosT. FerreiraL. BernardinoL. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases.J. Control. Release2016235344710.1016/j.jconrel.2016.05.044 27208862
    [Google Scholar]
  174. LoureiroJ. AndradeS. DuarteA. NevesA. QueirozJ. NunesC. SevinE. FenartL. GosseletF. CoelhoM. PereiraM. Resveratrol and grape extract-loaded solid lipid nanoparticles for the treatment of Alzheimer’s disease.Molecules201722227710.3390/molecules22020277 28208831
    [Google Scholar]
  175. MaL. YangC. ZhengJ. ChenY. XiaoY. HuangK. Non-polyphenolic natural inhibitors of amyloid aggregation.Eur. J. Med. Chem.202019211219710.1016/j.ejmech.2020.112197 32172082
    [Google Scholar]
  176. PalleS. NeeratiP. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease.Naunyn Schmiedebergs Arch. Pharmacol.2018391444545310.1007/s00210‑018‑1474‑8 29411055
    [Google Scholar]
  177. WangM. LiL. ZhangX. LiuY. ZhuR. LiuL. FangY. GaoZ. GaoD. Magnetic resveratrol liposomes as a new theranostic platform for magnetic resonance imaging guided Parkinson’s disease targeting therapy.ACS Sustain. Chem. Eng.2018612171241713310.1021/acssuschemeng.8b04507
    [Google Scholar]
  178. PangeniR. SharmaS. MustafaG. AliJ. BabootaS. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress.Nanotechnology2014254848510210.1088/0957‑4484/25/48/485102 25392203
    [Google Scholar]
  179. LuX. DongJ. ZhengD. LiX. DingD. XuH. Reperfusion combined with intraarterial administration of resveratrol-loaded nanoparticles improved cerebral ischemia–reperfusion injury in rats.Nanomedicine 20202810220810.1016/j.nano.2020.102208 32334100
    [Google Scholar]
  180. Silva AdayaD. Aguirre-CruzL. GuevaraJ. Ortiz-IslasE. Nanobiomaterials’ applications in neurodegenerative diseases.J. Biomater. Appl.201731795398410.1177/0885328216659032 28178902
    [Google Scholar]
  181. VelanderP. WuL. HendersonF. ZhangS. BevanD.R. XuB. Natural product-based amyloid inhibitors.Biochem. Pharmacol.2017139405510.1016/j.bcp.2017.04.004 28390938
    [Google Scholar]
  182. DogguiS. SahniJ.K. ArseneaultM. DaoL. RamassamyC. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line.J. Alzheimers Dis.201230237739210.3233/JAD‑2012‑112141 22426019
    [Google Scholar]
  183. TiwariS.K. AgarwalS. SethB. YadavA. NairS. BhatnagarP. KarmakarM. KumariM. ChauhanL.K.S. PatelD.K. SrivastavaV. SinghD. GuptaS.K. TripathiA. ChaturvediR.K. GuptaK.C. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway.ACS Nano2014817610310.1021/nn405077y 24467380
    [Google Scholar]
  184. FanS. ZhengY. LiuX. FangW. ChenX. LiaoW. JingX. LeiM. TaoE. MaQ. ZhangX. GuoR. LiuJ. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease.Drug Deliv.20182511091110210.1080/10717544.2018.1461955 30107760
    [Google Scholar]
  185. ChengK.K. YeungC.F. HoS.W. ChowS.F. ChowA.H.L. BaumL. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice.AAPS J.201315232433610.1208/s12248‑012‑9444‑4 23229335
    [Google Scholar]
  186. KumarP. VermaA. AshiqueS. BhowmickM. MohantoS. SinghA. GuptaM. GuptaA. HaiderT. Unlocking the role of herbal cosmeceutical in anti-ageing and skin ageing associated diseases.Cutan. Ocul. Toxicol., 202443321122610.1080/15569527.2024.2380326
    [Google Scholar]
  187. AshiqueS. MukherjeeT. MohantyS. GargA. MishraN. KaushikM. BhowmickM. ChattarajB. MohantoS. SrivastavaS. Taghizadeh-HesaryF. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications.J. Agric. Food Res.20241810130010.1016/j.jafr.2024.101300
    [Google Scholar]
  188. SharmaP. KumariP. SharmaM. SharmaR. PaliwalA. SrivastavaS. AshiqueS. BhowmickM. AdnanM. MirR.H. Therapeutic potential of Aloe vera-coated curcumin encapsulated nanoparticles in an Alzheimer-induced mice model: Behavioural, biochemical and histopathological evidence.J. Microencapsul.202441640341810.1080/02652048.2024.2373715 39007845
    [Google Scholar]
  189. BariA.B. KrishnanM. BabuS. Advantages and disadvantages of current therapeutics and phytochemicals for age-related brain disorders. In: Neuroprotective Effects of Phytochemicals in Brain Ageing. PathakS. BanerjeeA. SingaporeSpringer202435537210.1007/978‑981‑99‑7269‑2_16
    [Google Scholar]
  190. LazarA.N. MourtasS. YoussefI. ParizotC. DauphinA. DelatourB. AntimisiarisS.G. DuyckaertsC. Curcumin-conjugated nanoliposomes with high affinity for Aβ deposits: Possible applications to Alzheimer disease.Nanomedicine 20139571272110.1016/j.nano.2012.11.004 23220328
    [Google Scholar]
  191. AslamM. JavedM.N. DeebH.H. NicolaM.K. MirzaM. AlamM.S. AkhtarM.H. WaziriA. Lipid nanocarriers for neurotherapeutics: Introduction, challenges, blood-brain barrier, and promises of delivery approach.CNS Neurol. Disord. Drug Targets2022211095296510.2174/1871527320666210706104240 34967302
    [Google Scholar]
  192. BhatiaN.K. SrivastavaA. KatyalN. JainN. KhanM.A.I. KunduB. DeepS. Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity.Biochim. Biophys. Acta. Proteins Proteomics20151854542643610.1016/j.bbapap.2015.01.014 25666897
    [Google Scholar]
  193. TripodoG. ChlapanidasT. PerteghellaS. ViganiB. MandracchiaD. TrapaniA. GaluzziM. ToscaM.C. AntonioliB. GaetaniP. MarazziM. TorreM.L. Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases.Colloids Surf. B Biointerfaces201512530030810.1016/j.colsurfb.2014.11.034 25524221
    [Google Scholar]
  194. AhmadiM. AgahE. NafissiS. JaafariM.R. HarirchianM.H. SarrafP. Faghihi-KashaniS. HosseiniS.J. GhoreishiA. AghamollaiiV. HosseiniM. TafakhoriA. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial.Neurotherapeutics201815243043810.1007/s13311‑018‑0606‑7 29352425
    [Google Scholar]
  195. MdS. GanS.Y. HawY.H. HoC.L. WongS. ChoudhuryH. In vitro neuroprotective effects of naringenin nanoemulsion against β-amyloid toxicity through the regulation of amyloidogenesis and tau phosphorylation. Int. J. Biol. Macromol., 2018118Pt A1211121910.1016/j.ijbiomac.2018.06.19030001606
    [Google Scholar]
  196. GabaB. KhanT. HaiderM.F. AlamT. BabootaS. ParvezS. AliJ. Vitamin E loaded naringenin nanoemulsion via intranasal delivery for the management of oxidative stress in a 6-OHDA Parkinson’s disease model.Biomed Res. Int.20192019238256310.1155/2019/2382563 31111044
    [Google Scholar]
  197. AhmadA. FauziaE. KumarM. MishraR.K. KumarA. KhanM.A. RazaS.S. KhanR. Gelatin-coated polycaprolactone nanoparticle-mediated naringenin delivery rescue human mesenchymal stem cells from oxygen glucose deprivation-induced inflammatory stress.ACS Biomater. Sci. Eng.20195268369510.1021/acsbiomaterials.8b01081 33405831
    [Google Scholar]
  198. PalleS. NeeratiP. Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats.Bull. Fac. Pharm. Cairo Univ.201755110110610.1016/j.bfopcu.2016.10.004
    [Google Scholar]
  199. MorenoL.C.G.I. PuertaE. Suárez-SantiagoJ.E. Santos-MagalhãesN.S. RamirezM.J. IracheJ.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease.Int. J. Pharm.20175171-2505710.1016/j.ijpharm.2016.11.061 27915007
    [Google Scholar]
  200. TestaG. GambaP. BadilliU. GargiuloS. MainaM. GuinaT. CalfapietraS. BiasiF. CavalliR. PoliG. Loading into nanoparticles improves quercetin’s efficacy in preventing neuroinflammation induced by oxysterols.PLoS One201495e9679510.1371/journal.pone.0096795 24802026
    [Google Scholar]
  201. SunD. LiN. ZhangW. ZhaoZ. MouZ. HuangD. LiuJ. WangW. Design of PLGA-functionalized quercetin nanoparticles for potential use in Alzheimer’s disease.Colloids Surf. B Biointerfaces201614811612910.1016/j.colsurfb.2016.08.052 27591943
    [Google Scholar]
  202. GhoshA. SarkarS. MandalA.K. DasN. Neuroprotective role of nanoencapsulated quercetin in combating ischemia-reperfusion induced neuronal damage in young and aged rats.PLoS One201384e5773510.1371/journal.pone.0057735 23620721
    [Google Scholar]
  203. GhoshS. SarkarS. ChoudhuryS.T. GhoshT. DasN. Triphenyl phosphonium coated nano-quercetin for oral delivery: Neuroprotective effects in attenuating age related global moderate cerebral ischemia reperfusion injury in rats.Nanomedicine 20171382439245010.1016/j.nano.2017.08.002 28822845
    [Google Scholar]
  204. KuoY.C. RajeshR. Targeted delivery of rosmarinic acid across the blood–brain barrier for neuronal rescue using polyacrylamide-chitosan-poly(lactide-co-glycolide) nanoparticles with surface cross-reacting material 197 and apolipoprotein E.Int. J. Pharm.20175281-222824110.1016/j.ijpharm.2017.05.039 28549973
    [Google Scholar]
  205. BhattR. SinghD. PrakashA. MishraN. Development, characterization and nasal delivery of rosmarinic acid-loaded solid lipid nanoparticles for the effective management of Huntington’s disease.Drug Deliv.201522793193910.3109/10717544.2014.880860 24512295
    [Google Scholar]
  206. SmithA. GiuntaB. BickfordP.C. FountainM. TanJ. ShytleR.D. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease.Int. J. Pharm.20103891-220721210.1016/j.ijpharm.2010.01.012 20083179
    [Google Scholar]
  207. SinghN.A. MandalA.K.A. KhanZ.A. Inhibition of Al (III)-induced Aβ 42 fibrillation and reduction of neurotoxicity by epigallocatechin-3-gallate nanoparticles.J. Biomed. Nanotechnol.20181461147115810.1166/jbn.2018.2552 29843879
    [Google Scholar]
  208. ZhangJ. ZhouX. YuQ. YangL. SunD. ZhouY. LiuJ. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity.ACS Appl. Mater. Interfaces20146118475848710.1021/am501341u 24758520
    [Google Scholar]
  209. AalinkeelR. KutscherH.L. SinghA. CwiklinskiK. KhechenN. SchwartzS.A. PrasadP.N. MahajanS.D. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: A potential nanotherapy for Alzheimer’s disease?J. Drug Target.201826218219310.1080/1061186X.2017.1354002 28697660
    [Google Scholar]
  210. BondiM. MontanaG. CraparoE. PiconeP. CapuanoG. CarloM. GiammonaG. Ferulic acid-loaded lipid nanostructures as drug delivery systems for Alzheimer’s disease: Preparation, characterization and cytotoxicity studies.Curr. Nanosci.200951263210.2174/157341309787314656
    [Google Scholar]
  211. LohanS. RazaK. MehtaS.K. BhattiG.K. SainiS. SinghB. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: A preclinical evidence.Int. J. Pharm.20175301-226327810.1016/j.ijpharm.2017.07.080 28774853
    [Google Scholar]
  212. KunduP. DasM. TripathyK. SahooS.K. Delivery of dual drug loaded lipid based nanoparticles across the blood–brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease.ACS Chem. Neurosci.20167121658167010.1021/acschemneuro.6b00207 27642670
    [Google Scholar]
  213. Mohammad-BeigiH. MorshediD. ShojaosadatiS.A. PedersenJ.N. MarvianA.T. AliakbariF. ChristiansenG. PedersenJ.S. OtzenD.E. Gallic acid loaded onto polyethylenimine-coated human serum albumin nanoparticles (PEI-HSA-GA NPs) stabilizes α-synuclein in the unfolded conformation and inhibits aggregation.RSC Advances2016688853128532310.1039/C6RA08502D
    [Google Scholar]
  214. PhamL. WrightD.K. O’BrienW.T. BainJ. HuangC. SunM. Casillas-EspinosaP.M. ShahA.D. SchittenhelmR.B. SobeyC.G. BradyR.D. O’BrienT.J. MychasiukR. ShultzS.R. McDonaldS.J. Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model.Neurobiol. Dis.202114810515110.1016/j.nbd.2020.105151 33127468
    [Google Scholar]
  215. BabaeiF. MirzababaeiM. Nassiri-AslM. Quercetin in food: Possible mechanisms of its effect on memory.J. Food Sci.20188392280228710.1111/1750‑3841.14317 30103275
    [Google Scholar]
  216. ShahmoradianS.H. LewisA.J. GenoudC. HenchJ. MoorsT.E. NavarroP.P. Castaño-DíezD. SchweighauserG. Graff-MeyerA. GoldieK.N. SütterlinR. HuismanE. IngrassiaA. GierY. RozemullerA.J.M. WangJ. PaepeA.D. ErnyJ. StaempfliA. HoernschemeyerJ. GroßerüschkampF. NiediekerD. El-MashtolyS.F. QuadriM. Van IJckenW.F.J. BonifatiV. GerwertK. BohrmannB. FrankS. BritschgiM. StahlbergH. Van de BergW.D.J. LauerM.E. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes.Nat. Neurosci.20192271099110910.1038/s41593‑019‑0423‑2 31235907
    [Google Scholar]
  217. HunnB.H.M. CraggS.J. BolamJ.P. SpillantiniM.G. Wade-MartinsR. Impaired intracellular trafficking defines early Parkinson’s disease.Trends Neurosci.201538317818810.1016/j.tins.2014.12.009 25639775
    [Google Scholar]
  218. HiltonJ.B. WhiteA.R. CrouchP.J. Metal-deficient SOD1 in amyotrophic lateral sclerosis.J. Mol. Med. (Berl.)201593548148710.1007/s00109‑015‑1273‑3 25754173
    [Google Scholar]
  219. SirangeloI. IannuzziC. The role of metal binding in the amyotrophic lateral sclerosis-related aggregation of copper-zinc superoxide dismutase.Molecules2017229142910.3390/molecules22091429 28850080
    [Google Scholar]
  220. BostanA.C. StrickP.L. The basal ganglia and the cerebellum: Nodes in an integrated network.Nat. Rev. Neurosci.201819633835010.1038/s41583‑018‑0002‑7 29643480
    [Google Scholar]
  221. GilJ.M. RegoA.C. Mechanisms of neurodegeneration in Huntington’s disease.Eur. J. Neurosci.200827112803282010.1111/j.1460‑9568.2008.06310.x 18588526
    [Google Scholar]
  222. GarretM. DuZ. ChazalonM. ChoY.H. BaufretonJ. Alteration of GABA ergic neurotransmission in Huntington’s disease.CNS Neurosci. Ther.201824429230010.1111/cns.12826 29464851
    [Google Scholar]
  223. MishraN. AshiqueS. GargA. RaiV.K. DuaK. GoyalA. BhattS. Role of siRNA-based nanocarriers for the treatment of neurodegenerative diseases.Drug Discov. Today20222751431144010.1016/j.drudis.2022.01.003 35017085
    [Google Scholar]
  224. RigacciS. StefaniM. Nutraceuticals and amyloid neurodegenerative diseases: A focus on natural phenols.Expert Rev. Neurother.2015151415210.1586/14737175.2015.986101 25418871
    [Google Scholar]
  225. ZhaoD. SimonJ. WuQ. A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy.Crit. Rev. Food Sci. Nutr.202060459762510.1080/10408398.2018.1546668 30614258
    [Google Scholar]
  226. ShuklaR. SinghA. SinghK.K. Vincristine-based nanoformulations: A preclinical and clinical studies overview.Drug Deliv. Transl. Res.202414111610.1007/s13346‑023‑01389‑6 37552393
    [Google Scholar]
  227. RenaudJ. MartinoliM.G. Considerations for the use of polyphenols as therapies in neurodegenerative diseases.Int. J. Mol. Sci.2019208188310.3390/ijms20081883 30995776
    [Google Scholar]
  228. HuS. MaitiP. MaQ. ZuoX. JonesM.R. ColeG.M. FrautschyS.A. Clinical development of curcumin in neurodegenerative disease.Expert Rev. Neurother.201515662963710.1586/14737175.2015.1044981 26035622
    [Google Scholar]
  229. RakotoarisoaM. AngelovaA. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. In: The Road from Nanomedicine to Precision Medicine.1st edJenny Stanford Publishing20191027106510.1201/9780429295010‑33
    [Google Scholar]
  230. LuY. KimS. ParkK. In vitro–in vivo correlation: Perspectives on model development.Int. J. Pharm.2011418114214810.1016/j.ijpharm.2011.01.010 21237256
    [Google Scholar]
  231. BhattacharjeeS. DLS and zeta potential – What they are and what they are not?J. Control. Release201623533735110.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  232. NagoriK. NakhateK.T. YadavK. Ajazuddin; Pradhan, M. Unlocking the therapeutic potential of medicinal plants for Alzheimer’s disease: Preclinical to clinical trial insights.Future Pharmacol.20233487790710.3390/futurepharmacol3040053
    [Google Scholar]
  233. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: Trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/1567201818666210609161301 34151759
    [Google Scholar]
  234. VarmaL.T. SinghN. GorainB. ChoudhuryH. TambuwalaM.M. KesharwaniP. ShuklaR. Recent advances in self-assembled nanoparticles for drug delivery.Curr. Drug Deliv.202017427929110.2174/1567201817666200210122340 32039683
    [Google Scholar]
  235. KalepuS. NekkantiV. Improved delivery of poorly soluble compounds using nanoparticle technology: A review.Drug Deliv. Transl. Res.20166331933210.1007/s13346‑016‑0283‑1 26891912
    [Google Scholar]
  236. AshiqueS. MohantoS. AhmedM.G. MishraN. GargA. ChellappanD.K. OmaraT. IqbalS. KahwaI. Gut-brain axis: A cutting-edge approach to target neurological disorders and potential synbiotic application.Heliyon20241013e3409210.1016/j.heliyon.2024.e34092 39071627
    [Google Scholar]
  237. PaiS. HebbarA. SelvarajS. A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector.Environ. Sci. Pollut. Res. Int.20222924355183554110.1007/s11356‑022‑19423‑4 35233673
    [Google Scholar]
  238. ShoaibS. AnsariM.A. FateaseA.A. SafhiA.Y. HaniU. JahanR. AlomaryM.N. AnsariM.N. AhmedN. WahabS. AhmadW. YusufN. IslamN. Plant-derived bioactive compounds in the management of neurodegenerative disorders: Challenges, future directions and molecular mechanisms involved in neuroprotection.Pharmaceutics202315374910.3390/pharmaceutics15030749 36986610
    [Google Scholar]
  239. CanoA. EttchetoM. ChangJ.H. BarrosoE. EspinaM. KühneB.A. BarenysM. AuladellC. FolchJ. SoutoE.B. CaminsA. TurowskiP. GarcíaM.L. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model.J. Control. Release2019301627510.1016/j.jconrel.2019.03.010 30876953
    [Google Scholar]
  240. LvL. YangF. LiH. YuanJ. Brain‐targeted co‐delivery of β‐amyloid converting enzyme 1 shRNA and epigallocatechin‐3‐gallate by multifunctional nanocarriers for Alzheimer’s disease treatment.IUBMB Life20207281819182910.1002/iub.2330 32668504
    [Google Scholar]
  241. KlaipsC.L. JayarajG.G. HartlF.U. Pathways of cellular proteostasis in aging and disease.J. Cell Biol.20182171516310.1083/jcb.201709072 29127110
    [Google Scholar]
  242. DouglasP.M. DillinA. Protein homeostasis and aging in neurodegeneration.J. Cell Biol.2010190571972910.1083/jcb.201005144 20819932
    [Google Scholar]
  243. KaushikS. CuervoA.M. Proteostasis and aging.Nat. Med.201521121406141510.1038/nm.4001 26646497
    [Google Scholar]
  244. KimY.E. HippM.S. BracherA. Hayer-HartlM. Ulrich HartlF. Molecular chaperone functions in protein folding and proteostasis.Annu. Rev. Biochem.201382132335510.1146/annurev‑biochem‑060208‑092442 23746257
    [Google Scholar]
  245. SaibilH. Chaperone machines for protein folding, unfolding and disaggregation.Nat. Rev. Mol. Cell Biol.2013141063064210.1038/nrm3658 24026055
    [Google Scholar]
  246. WinklhoferK.F. TatzeltJ. HaassC. The two faces of protein misfolding: Gain-and loss-of-function in neurodegenerative diseases.EMBO J.200827233634910.1038/sj.emboj.7601930 18216876
    [Google Scholar]
  247. FonteV. KippD.R. YergJ. MerinD. ForrestalM. WagnerE. RobertsC.M. LinkC.D. Suppression of in vivo β-amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein.J. Biol. Chem.2008283278479110.1074/jbc.M703339200 17993648
    [Google Scholar]
  248. AkbarM.T. LundbergA.M.C. LiuK. VidyadaranS. WellsK.E. DolatshadH. WynnS. WellsD.J. LatchmanD.S. de BellerocheJ. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death.J. Biol. Chem.200327822199561996510.1074/jbc.M207073200 12639970
    [Google Scholar]
  249. KluckenJ. ShinY. MasliahE. HymanB.T. McLeanP.J. Hsp70 reduces α-synuclein aggregation and toxicity.J. Biol. Chem.200427924254972550210.1074/jbc.M400255200 15044495
    [Google Scholar]
  250. MagranéJ. SmithR.C. WalshK. QuerfurthH.W. Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed β-amyloid in neurons.J. Neurosci.20042471700170610.1523/JNEUROSCI.4330‑03.2004 14973234
    [Google Scholar]
  251. KatoK. ItoH. KameiK. IwamotoI. Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo.Cell Stress Chaperones199833152160 9764755
    [Google Scholar]
  252. MaitiP. MannaJ. VeleriS. FrautschyS. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin.BioMed Res. Int.2014201411410.1155/2014/495091 25386560
    [Google Scholar]
  253. Cuanalo-ContrerasK. MukherjeeA. SotoC. Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging.Int. J. Cell Biol.2013201363808310.1155/2013/638083 24348562
    [Google Scholar]
  254. GiampieriF. AfrinS. Forbes-HernandezT.Y. GasparriniM. CianciosiD. Reboredo-RodriguezP. Varela-LopezA. QuilesJ.L. BattinoM. Autophagy in human health and disease: Novel therapeutic opportunities.Antioxid. Redox Signal.201930457763410.1089/ars.2017.7234 29943652
    [Google Scholar]
  255. MenziesF.M. FlemingA. CaricasoleA. BentoC.F. AndrewsS.P. AshkenaziA. FüllgrabeJ. JacksonA. Jimenez SanchezM. KarabiyikC. LicitraF. Lopez RamirezA. PavelM. PuriC. RennaM. RickettsT. SchlotawaL. VicinanzaM. WonH. ZhuY. SkidmoreJ. RubinszteinD.C. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities.Neuron20179351015103410.1016/j.neuron.2017.01.022 28279350
    [Google Scholar]
  256. MathewR. Karantza-WadsworthV. WhiteE. Role of autophagy in cancer.Nat. Rev. Cancer200771296196710.1038/nrc2254 17972889
    [Google Scholar]
  257. CiechanoverA. KwonY.T. Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies.Exp. Mol. Med.2015473e14710.1038/emm.2014.117 25766616
    [Google Scholar]
  258. Nascimento-FerreiraI. Santos-FerreiraT. Sousa-FerreiraL. AureganG. OnofreI. AlvesS. DufourN. Colomer GouldV.F. KoeppenA. DéglonN. Pereira de AlmeidaL. Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado–Joseph disease.Brain201113451400141510.1093/brain/awr047 21478185
    [Google Scholar]
  259. Volpicelli-DaleyL.A. GambleK.L. SchultheissC.E. RiddleD.M. WestA.B. LeeV.M.Y. Formation of α-synuclein Lewy neurite–like aggregates in axons impedes the transport of distinct endosomes.Mol. Biol. Cell201425254010402310.1091/mbc.e14‑02‑0741 25298402
    [Google Scholar]
  260. RavikumarB. DudenR. RubinszteinD.C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy.Hum. Mol. Genet.20021191107111710.1093/hmg/11.9.1107 11978769
    [Google Scholar]
  261. PapaevgeniouN. ChondrogianniN. The ubiquitin proteasome system in Caenorhabditis elegans and its regulation.Redox Biol.2014233334710.1016/j.redox.2014.01.007 24563851
    [Google Scholar]
  262. YangH. Landis-PiwowarK. ChenD. MilacicV. DouQ. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment.Curr. Protein Pept. Sci.20089322723910.2174/138920308784533998 18537678
    [Google Scholar]
  263. ChondrogianniN. GonosE.S. Proteasome activation as a novel antiaging strategy.IUBMB Life2008601065165510.1002/iub.99 18506854
    [Google Scholar]
  264. ZesiewiczT. HeerinckxF. De JagerR. OmidvarO. KilpatrickM. ShawJ. ShchepinovM.S. Randomized, clinical trial of RT001: Early signals of efficacy in Friedreich’s ataxia.Mov. Disord.20183361000100510.1002/mds.27353 29624723
    [Google Scholar]
  265. BorkC.S. VenøS.K. Lundbye-ChristensenS. JakobsenM.U. TjønnelandA. SchmidtE.B. OvervadK. Dietary intake of α-linolenic acid is not appreciably associated with risk of ischemic stroke among middle-aged Danish men and women.J. Nutr.2018148695295810.1093/jn/nxy056 29767732
    [Google Scholar]
  266. GruneT. ReinheckelT. DaviesK.J.A. Degradation of oxidized proteins in mammalian cells.FASEB J.199711752653410.1096/fasebj.11.7.9212076 9212076
    [Google Scholar]
  267. Lefèvre-ArbogastS. ChakerJ. MercierF. BaroukiR. CoumoulX. MillerG.W. DavidA. SamieriC. Assessing the contribution of the chemical exposome to neurodegenerative disease.Nat. Neurosci.202427581282110.1038/s41593‑024‑01627‑1 38684891
    [Google Scholar]
  268. SamantaS. ChakrabortyS. BagchiD. Pathogenesis of neurodegenerative diseases and the protective role of natural bioactive components.J. Am. Nutr. Assoc.2024431203210.1080/27697061.2023.2203235 37186678
    [Google Scholar]
  269. DebnathA. MajumderR. SinghM.K. SahaR.P. DasA. Chapter 42 - Elucidating the potential of natural bioactive compounds in neuroprotection. In: A Review on Diverse Neurological Disorders.Academic Press202457358410.1016/B978‑0‑323‑95735‑9.00032‑2
    [Google Scholar]
  270. ShuklaR. SinghS. MishraK. Remedial measures for neurodegenerative diseases targeting gut-microbial dysfunction with herbal bio-actives.Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci.202410.1007/s40011‑023‑01527‑7
    [Google Scholar]
  271. Effect of nicotinamide in Friedreich's ataxia. NCT01589809,2017
    [Google Scholar]
  272. HanM. Randomized control trial of small-molecule natural flavonoids intervention for neurodegenerative diseases.NCT059473962023
    [Google Scholar]
  273. HanM. Single arm clinical trial of small molecule natural flavonoid compounds for intervention in neurodegenerative diseases.NCT05947409.2023
    [Google Scholar]
  274. TrojanoM. Pilot study about extra virgin olive oil "Coratina" in mild cognitive impairment and alzheimer's disease patients (EVOCAD). NCT042291862020
    [Google Scholar]
  275. AliF. Role of saffron and chamomile in the management of Parkinson's disease (SAFCHEMRxPar).NCT056966652023
    [Google Scholar]
  276. John SimonW.M. Williams, ; Alexander, P. Nicotinamide for use in the treatment and prevention of ocular neurodegenerative disorders (e.g. glaucoma). JP Patent 7312886B2, 2023
    [Google Scholar]
  277. IuvoneT. MarzoW.D. GuyG. WrightS. StottC. Cannabinoids for use in the treatment of neurodegenerative diseases or disorders. US Patent 10258580B2,2019
    [Google Scholar]
  278. HaugheyN.J. NathA. ChanS.L. BorchardA.C. RaoM.S. MattsonM.P. Disruption of neurogenesis by amyloid β‐peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease.J. Neurochem.20028361509152410.1046/j.1471‑4159.2002.01267.x 12472904
    [Google Scholar]
  279. KoleckiR. LaFauciG. RubensteinR. Mazur-KoleckaB. KaczmarskiW. FrackowiakJ. The effect of amyloidosis-β and ageing on proliferation of neuronal progenitor cells in APP-transgenic mouse hippocampus and in culture.Acta Neuropathol.2008116441942410.1007/s00401‑008‑0380‑4 18483741
    [Google Scholar]
  280. JinK. PeelA.L. MaoX.O. XieL. CottrellB.A. HenshallD.C. GreenbergD.A. Increased hippocampal neurogenesis in Alzheimer’s disease.Proc. Natl. Acad. Sci. USA2004101134334710.1073/pnas.2634794100 14660786
    [Google Scholar]
  281. VerwerR.W.H. SluiterA.A. BalesarR.A. BaayenJ.C. NoskeD.P. DirvenC.M.F. WoudaJ. van DamA.M. LucassenP.J. SwaabD.F. Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin.Brain2007130123321333510.1093/brain/awm264 18055496
    [Google Scholar]
  282. LovellM.A. GeigerH. Van ZantG.E. LynnB.C. MarkesberyW.R. Isolation of neural precursor cells from Alzheimer’s disease and aged control postmortem brain.Neurobiol. Aging200627790991710.1016/j.neurobiolaging.2005.05.004 15979211
    [Google Scholar]
  283. BoekhoornK. JoelsM. LucassenP.J. Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus.Neurobiol. Dis.200624111410.1016/j.nbd.2006.04.017 16814555
    [Google Scholar]
  284. ZiabrevaI. PerryE. PerryR. MingerS.L. EkonomouA. PrzyborskiS. BallardC. Altered neurogenesis in Alzheimer’s disease.J. Psychosom. Res.200661331131610.1016/j.jpsychores.2006.07.017 16938507
    [Google Scholar]
  285. TongL. BalazsR. ThorntonP.L. CotmanC.W. β-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons.J. Neurosci.200424306799680910.1523/JNEUROSCI.5463‑03.2004 15282285
    [Google Scholar]
  286. CuelloA.C. BrunoM.A. The failure in NGF maturation and its increased degradation as the probable cause for the vulnerability of cholinergic neurons in Alzheimer’s disease.Neurochem. Res.20073261041104510.1007/s11064‑006‑9270‑0 17404842
    [Google Scholar]
  287. SunM. KongL. WangX. LuX. GaoQ. GellerA.I. Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease.Brain Res.20051052211912910.1016/j.brainres.2005.05.072 16018990
    [Google Scholar]
  288. CaoH. ZhangG. WangX. KongL. GellerA.I. Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles.BMC Neurosci.2008913710.1186/1471‑2202‑9‑37 18402684
    [Google Scholar]
  289. StratenG. EschweilerG.W. MaetzlerW. LaskeC. LeyheT. Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer’s disease and normal controls.J. Alzheimers Dis.200918233133710.3233/JAD‑2009‑1146 19584438
    [Google Scholar]
  290. MarksteinerJ. KemmlerG. WeissE.M. KnausG. UllrichC. MechtcheriakovS. OberbauerH. AuffingerS. HinterhölzlJ. HinterhuberH. HumpelC. Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease.Neurobiol. Aging201132353954010.1016/j.neurobiolaging.2009.03.011 19395124
    [Google Scholar]
  291. LiangZ. HuH. LiJ. YaoD. WangY. UngC.O.L. Advancing the regulation of traditional and complementary medicine products: A comparison of five regulatory systems on traditional medicines with a long history of use.Evid. Based Complement. Alternat. Med.20212021111610.1155/2021/5833945 34745290
    [Google Scholar]
  292. RasoolR. UllahI. ShahidS. MubeenB. ImamS.S. AlshehriS. GhoneimM.M. AlzareaS.I. MurtazaB.N. NadeemM.S. KazmiI. In vivo assessment of the ameliorative impact of some medicinal plant extracts on lipopolysaccharide-induced multiple sclerosis in wistar rats.Molecules2022275160810.3390/molecules27051608 35268709
    [Google Scholar]
  293. Bin-JumahM.N. GilaniS.J. AlabbasiA.F. Al-AbbasiF.A. AlGhamdiS.A. AlshehriO.Y. AlghamdiA.M. SayyedN. KazmiI. Protective effect of fustin against huntington’s disease in 3-nitropropionic treated rats via downregulation of oxidative stress and alteration in neurotransmitters and brain-derived neurotrophic factor activity.Biomedicines20221012302110.3390/biomedicines10123021 36551777
    [Google Scholar]
  294. WangM. LiY.J. DingY. ZhangH.N. SunT. ZhangK. YangL. GuoY.Y. LiuS.B. ZhaoM.G. WuY.M. Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury.Mol. Neurobiol.201653293294310.1007/s12035‑014‑9062‑5 25561437
    [Google Scholar]
  295. RahmanM.H. BajgaiJ. FadriquelaA. SharmaS. TrinhT.T. AkterR. JeongY.J. GohS.H. KimC.S. LeeK.J. Therapeutic potential of natural products in treating neurodegenerative disorders and their future prospects and challenges.Molecules20212617532710.3390/molecules26175327 34500759
    [Google Scholar]
  296. El AlaouiC. CheminJ. FechtaliT. LoryP. Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts.PLoS One20171210e018686410.1371/journal.pone.0186864 29073181
    [Google Scholar]
  297. ImmonenE. KummuM. PetsaloA. PihlajaT. MathiesenL. NielsenJ.K.S. KnudsenL.E. VähäkangasK. MyllynenP. Toxicokinetics of the food-toxin IQ in human placental perfusion is not affected by ABCG2 or xenobiotic metabolism.Placenta201031764164810.1016/j.placenta.2010.05.002 20570348
    [Google Scholar]
  298. López-CarnlloL. AvilaM.H. DubrowR. Chili pepper consumption and gastric cancer in Mexico: A case-control study.Am. J. Epidemiol.1994139326327110.1093/oxfordjournals.aje.a116993 8116601
    [Google Scholar]
  299. SzallasiA. CortrightD.N. BlumC.A. EidS.R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept.Nat. Rev. Drug Discov.20076535737210.1038/nrd2280 17464295
    [Google Scholar]
  300. LaqueurG.L. SpatzM. Toxicology of cycasin.Cancer Res.1968281122622267 4881504
    [Google Scholar]
  301. KisbyG.E. FryR.C. LasarevM.R. BammlerT.K. BeyerR.P. ChurchwellM. DoergeD.R. MeiraL.B. PalmerV.S. Ramos-CrawfordA.L. RenX. SullivanR.C. KavanaghT.J. SamsonL.D. ZarblH. SpencerP.S. The cycad genotoxin MAM modulates brain cellular pathways involved in neurodegenerative disease and cancer in a DNA damage-linked manner.PLoS One201166e2091110.1371/journal.pone.0020911 21731631
    [Google Scholar]
  302. ThorgeirssonU.P. DalgardD.W. ReevesJ. AdamsonR.H. Tumor incidence in a chemical carcinogenesis study of nonhuman primates.Regul. Toxicol. Pharmacol.199419213015110.1006/rtph.1994.1013 8041912
    [Google Scholar]
  303. a DwyerJT Have safety and efficacy assessments of bioactives come of age? Mol. Aspects Med., 20238910110310.1016/j.mam.2022.10110335853784
    [Google Scholar]
  304. (b YoungR. Informed consent and patient autonomy. In: A Companion to Bioethics. KuhseH. SingerP. Malden, Mass., USAWiley-Blackwell199853054010.1002/9781444307818.ch44
    [Google Scholar]
  305. YatesA.A. DwyerJ.T. ErdmanJ.W. KingJ.C. LyleB.J. SchneemanB.O. WeaverC.M. Perspective: Framework for developing recommended intakes of bioactive dietary substances.Adv. Nutr.20211241087109910.1093/advances/nmab044 33962461
    [Google Scholar]
  306. WhiteA. BoonH. AlraekT. LewithG. LiuJ-P. NorheimA-J. SteinsbekkA. YamashitaH. FønnebøV. Reducing the risk of complementary and alternative medicine (CAM): Challenges and priorities.Eur. J. Integr. Med.20146440440810.1016/j.eujim.2013.09.006
    [Google Scholar]
  307. ChatfieldK. SalehiB. Sharifi-RadJ. AfsharL. Applying an ethical framework to herbal medicine.Evid. Based Complement. Alternat. Med.201820181190362910.1155/2018/1903629 30327677
    [Google Scholar]
  308. SieberS.M. CorreaP. DalgardD.W. McIntireK.R. AdamsonR.H. Carcinogenicity and hepatotoxicity of cycasin and its aglycone methylazoxymethanol acetate in nonhuman primates.J. Natl. Cancer Inst.1980651177189 6248673
    [Google Scholar]
  309. BarnesJ. MillsS.Y. AbbotN.C. WilloughbyM. ErnstE. Different standards for reporting ADRs to herbal remedies and conventional OTC medicines: Face‐to‐face interviews with 515 users of herbal remedies.Br. J. Clin. Pharmacol.199845549650010.1046/j.1365‑2125.1998.00715.x 9643624
    [Google Scholar]
  310. ErnstE. Risks of herbal medicinal products.Pharmacoepidemiol. Drug Saf.2004131176777110.1002/pds.1014 15386721
    [Google Scholar]
  311. ShahvisiA. No understanding, no consent: The case against alternative medicine.Bioethics2016302697610.1111/bioe.12228 26806449
    [Google Scholar]
  312. EntwistleV.A. WattI.S. Treating patients as persons: A capabilities approach to support delivery of person-centered care.Am. J. Bioeth.2013138293910.1080/15265161.2013.802060 23862598
    [Google Scholar]
  313. EpsteinR.M. The ambiguity of personhood.Am. J. Bioeth.2013138424410.1080/15265161.2013.804746 23862600
    [Google Scholar]
  314. ErnstE. Ethics of complementary medicine: Practical issues.Br. J. Gen. Pract.20095956451751910.3399/bjgp09X453404 19567001
    [Google Scholar]
  315. FieldsL.M. CalvertJ.D. Informed consent procedures with cognitively impaired patients: A review of ethics and best practices.Psychiatry Clin. Neurosci.201569846247110.1111/pcn.12289 25756740
    [Google Scholar]
  316. de OliveiraB.F. VelosoC.A. Nogueira-MachadoJ.A. de MoraesE.N. dos SantosR.R. CintraM.T.G. ChavesM.M. Ascorbic acid, alpha-tocopherol, and beta-carotene reduce oxidative stress and proinflammatory cytokines in mononuclear cells of Alzheimer’s disease patients.Nutr. Neurosci.201215624425110.1179/1476830512Y.0000000019 22710805
    [Google Scholar]
  317. SinghA. MhaskeA. ShuklaR. Fabrication of TPGS-grafted polyamidoamine dendrimer for enhanced piperine brain delivery and pharmacokinetics.AAPS PharmSciTech202223723610.1208/s12249‑022‑02393‑8 36002713
    [Google Scholar]
  318. HasanG.M. AnwarS. ShamsiA. SohalS.S. HassanM.I. The neuroprotective potential of phytochemicals in traumatic brain injury: Mechanistic insights and pharmacological implications.Front. Pharmacol.202414133009810.3389/fphar.2023.1330098 38239205
    [Google Scholar]
  319. JaberiK.R. Alamdari-palangiV. SavardashtakiA. VatankhahP. JamialahmadiT. TajbakhshA. SahebkarA. Modulatory effects of phytochemicals on gut-brain axis: Therapeutic implication.Curr. Dev. Nutr.20248610378510.1016/j.cdnut.2024.103785 38939650
    [Google Scholar]
/content/journals/nanoasi/10.2174/0122106812320650241015153325
Loading
/content/journals/nanoasi/10.2174/0122106812320650241015153325
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test