Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the deadliest viruses among respiratory viruses which resulted in COVID-19 pandemic. The virus gets transmitted by the nasal route and moves down to the trachea, bronchi, and then to the lungs. Once replicated inside the alveolar cells, the SARS-CoV-2 makes the membrane of the alveolar sac porous, which causes the leaking of plasma from surrounding blood vessels into the alveolar sac leading to its buildup. This process results in the production of pro-inflammatory cytokines like interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α) by the helper T-cells at the site of the infection, causing difficulty in breathing. Plant-based alkaloids can be promising to treat viral infections. Plants have contributed to drug development against viruses like Herpes simplex virus (HSV), Human immunodeficiency virus (HIV), Hepatitis B virus (HBV), and viruses that cause respiratory diseases in humans. Plant alkaloids, either in the form of extract, infusion, or powder, have shown potential in treating viral diseases mainly by targeting the replication of viruses. Alkaloids like Tetrandrine, Oxymatrine, and Berberine have been shown to have a positive role in mediating pro-inflammatory cytokines like IL-1. These alkaloids thus inactivate the nuclear factor kappa-B (NF-kB) pathway, inhibiting the expression of its targeted genes, IL-1β and TNF-α. This inactivation of NF-kB results in reduced levels of IL-1 and TNF-α, and consequently reduced inflammation, decreasing the stress on the immune cells and increasing the ability of the patient to fight the infection. Despite vaccine development for SARS-CoV-2, the virus is continuously evolving into new varieties, posing a threat to humans and it is necessary to develop effective drug discovery programs. Natural products can pave the way in this regard. This review can contribute towards safer drug development against SARS-CoV-2, combating the threat of the ever-emerging variants of this virus.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/1570193X20666230821143410
2023-10-06
2025-07-15
Loading full text...

Full text loading...

References

  1. SchnitzlerP. SchönK. ReichlingJ. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture.Pharmazie.200156434334711338678
    [Google Scholar]
  2. TiwariR. RanaC. Plant secondary metabolites: A review.Int. J. Eng. Res. Generic Sci.201535661670
    [Google Scholar]
  3. YounusM. WilkinsM.J. ArshadM.M. RahbarM.H. SaeedA.M. Demographic risk factors and incidence of Salmonella enteritidis infection in Michigan.Foodborne. Pathog. Dis.20063326627310.1089/fpd.2006.3.26616972775
    [Google Scholar]
  4. OdimegwuDC NgwokeK EjikeugwuC EsimoneCO Lichen secondary metabolites as possible antiviral agents. RankovićB. Lichen Secondary MetabolitesSpringerCham2019
    [Google Scholar]
  5. González-LamotheR. MitchellG. GattusoM. DiarraM. MalouinF. BouarabK. Plant antimicrobial agents and their effects on plant and human pathogens.Int. J. Mol. Sci.20091083400341910.3390/ijms1008340020111686
    [Google Scholar]
  6. Palá-PaúlJ Usano-AlemanyJ GrandaE SoriaA-C Antifungal and antibacterial activity of the essential oil of Chamaecyparis lawsoniana from Spain.Nat. Prod. Commun.20127101934578X120070103610.1177/1934578X1200701036
    [Google Scholar]
  7. ReichlingJ. NeunerA. SharafM. HarkenthalM. SchnitzlerP. Antiviral activity of Rhus aromatica (fragrant sumac) extract against two types of herpes simplex viruses in cell culture.Pharmazie200964853854119746844
    [Google Scholar]
  8. PrinslooG. MarokaneC.K. StreetR.A. Anti-HIV activity of southern African plants: Current developments, phytochemistry and future research.J. Ethnopharmacol.201821013315510.1016/j.jep.2017.08.00528807850
    [Google Scholar]
  9. MukhtarM. ArshadM. AhmadM. PomerantzR.J. WigdahlB. ParveenZ. Antiviral potentials of medicinal plants.Virus. Res.2008131211112010.1016/j.virusres.2007.09.00817981353
    [Google Scholar]
  10. QiuL.P. ChenK.P. Anti-HBV agents derived from botanical origin.Fitoterapia.20138414015710.1016/j.fitote.2012.11.00323164603
    [Google Scholar]
  11. KitazatoK. WangY. KobayashiN. Viral infectious disease and natural products with antiviral activity.Drug Discov. Ther.200711142222504360
    [Google Scholar]
  12. VenuL.N. AustinA. Antiviral efficacy of medicinal plants against respiratory viruses: Respiratory Syncytial Virus (RSV) and Coronavirus (CoV)/COVID 19.J. Phytopharm.20209428129010.31254/phyto.2020.9412
    [Google Scholar]
  13. WeiW. DuH. ShaoC. ZhouH. LuY. YuL. WanH. HeY. Screening of antiviral components of Ma Huang Tang and investigation on the ephedra alkaloids efficacy on influenza virus type A.Front. Pharmacol.20191096110.3389/fphar.2019.0096131551774
    [Google Scholar]
  14. ParkS.W. KwonM.J. YooJ.Y. ChoiH.J. AhnY.J. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses.BMC Complement. Altern. Med.201414117110.1186/1472‑6882‑14‑17124885569
    [Google Scholar]
  15. AlrashediH. Al-AtaieS. BanoonS. FayedM. Potential role of medicinal plants for the treatment of respiratory viruses: A review.Egypt. J. Chem.202164127495750810.21608/ejchem.2021.97912.4569
    [Google Scholar]
  16. LiS. ChenC. ZhangH. GuoH. WangH. WangL. ZhangX. HuaS. YuJ. XiaoP. LiR.S. TanX. Identification of natural compounds with antiviral activities against SARS-associated coronavirus.Antiviral. Res.2005671182310.1016/j.antiviral.2005.02.00715885816
    [Google Scholar]
  17. WangY. HaoC. JiW. LuY. WuM. ChenS. WangK. ShaoX. Detecting respiratory viruses in children with protracted bacterial bronchitis.Respir. Med.2019151555810.1016/j.rmed.2019.04.00331047118
    [Google Scholar]
  18. MoradiM.T. KarimiA. LorigooiniZ. Alkaloids as the natural anti-influenza virus agents: A systematic review.Toxin. Rev.2018371111810.1080/15569543.2017.1323338
    [Google Scholar]
  19. TagaI LanCQ AltosaarI Plant essential oils and mastitis disease: Their potential inhibitory effects on pro-inflammatory cytokine production in response to bacteria related inflammation.Nat. Prod. Commun.2012751934578X1200700534
    [Google Scholar]
  20. PicaN. BouvierN.M. Environmental factors affecting the transmission of respiratory viruses.Curr. Opin. Virol.201221909510.1016/j.coviro.2011.12.00322440971
    [Google Scholar]
  21. KutterJ.S. SpronkenM.I. FraaijP.L. FouchierR.A.M. HerfstS. Transmission routes of respiratory viruses among humans.Curr. Opin. Virol.20182814215110.1016/j.coviro.2018.01.00129452994
    [Google Scholar]
  22. HishikiT. KatoF. TajimaS. ToumeK. UmezakiM. TakasakiT. MiuraT. Hirsutine, an indole alkaloid of uncaria rhynchophylla, inhibits late step in dengue virus lifecycle.Front. Microbiol.20178167410.3389/fmicb.2017.0167428912773
    [Google Scholar]
  23. ZhangY.N. ZhangQ.Y. LiX.D. XiongJ. XiaoS.Q. WangZ. ZhangZ.R. DengC.L. YangX.L. WeiH.P. YuanZ.M. YeH.Q. ZhangB. Gemcitabine, lycorine and oxysophoridine inhibit novel coronavirus (SARS-CoV-2) in cell culture.Emerg. Microbes. Infect.2020911170117310.1080/22221751.2020.177267632432977
    [Google Scholar]
  24. RoyM. LiangL. XiaoX. FengP. YeM. LiuJ. Lycorine: A prospective natural lead for anticancer drug discovery.Biomed. Pharmacother.201810761562410.1016/j.biopha.2018.07.14730114645
    [Google Scholar]
  25. khalifaM. AttiaE. FahimJ. KamelM. An overview on the chemical and biological aspects of lycorine alkaloid.J. Adv. Med. Pharm. Sci.201812414910.21608/jabps.2018.4088.1016
    [Google Scholar]
  26. YanY.Q. FuY.J. WuS. QinH.Q. ZhenX. SongB.M. WengY.S. WangP.C. ChenX.Y. JiangZ.Y. Anti-influenza activity of berberine improves prognosis by reducing viral replication in mice.Phytother. Res.201832122560256710.1002/ptr.619630306659
    [Google Scholar]
  27. KumarA. Ekavali ChopraK. MukherjeeM. PottabathiniR. DhullD.K. Current knowledge and pharmacological profile of berberine: An update.Eur. J. Pharmacol.201576128829710.1016/j.ejphar.2015.05.06826092760
    [Google Scholar]
  28. ZhangG.B. ZhangB. ZhangX.X. BingF.H. Homonojirimycin, an alkaloid from dayflower inhibits the growth of influenza A virus in vitro. Acta. Virol.2013571858610.4149/av_2013_01_8523530829
    [Google Scholar]
  29. ZhangG. TianL. LiY. LiaoY. LiJ. BingF. Protective effect of homonojirimycin from Commelina communis (dayflower) on influenza virus infection in mice.Phytomedicine.2013201196496810.1016/j.phymed.2013.04.00923746956
    [Google Scholar]
  30. YangM. WangY. YueY. LiangL. PengM. ZhaoM. ChenY. CaoX. LiW. LiC. ZhangH. DuJ. ZhongR. XiaT. ShuZ. Traditional Chinese medicines as effective agents against influenza virus-induced pneumonia.Biomed. Pharmacother.202215311352310.1016/j.biopha.2022.11352336076605
    [Google Scholar]
  31. SerkedjievaJ. VelchevaM. In vitro anti-influenza virus activity of the pavine alkaloid (-)-thalimonine isolated from Thalictrum simplex L.Antivir. Chem. Chemother.2003142758010.1177/09563202030140020212856918
    [Google Scholar]
  32. MaS.C. DuJ. ButP.P.H. DengX.L. ZhangY.W. OoiV.E.C. XuH.X. LeeS.H.S. LeeS.F. Antiviral Chinese medicinal herbs against respiratory syncytial virus.J. Ethnopharmacol.200279220521110.1016/S0378‑8741(01)00389‑011801383
    [Google Scholar]
  33. DingP.L. LiaoZ.X. HuangH. ZhouP. ChenD.F. (+)-12α-Hydroxysophocarpine, a new quinolizidine alkaloid and related anti-HBV alkaloids from Sophora flavescens.Bioorg. Med. Chem. Lett.20061651231123510.1016/j.bmcl.2005.11.07316364643
    [Google Scholar]
  34. ShinH.B. ChoiM.S. YiC.M. LeeJ. KimN.J. InnK.S. Inhibition of respiratory syncytial virus replication and virus-induced p38 kinase activity by berberine.Int. Immunopharmacol.2015271656810.1016/j.intimp.2015.04.04525939536
    [Google Scholar]
  35. BabalghithA.O. Al-kuraishyH.M. Al-GareebA.I. De WaardM. Al-HamashS.M. Jean-MarcS. NegmW.A. BatihaG.E.S. The role of berberine in Covid-19: Potential adjunct therapy.Inflammopharmacology20223062003201610.1007/s10787‑022‑01080‑136183284
    [Google Scholar]
  36. IstatkovaR. Nikolaeva-GlombL. GalabovA. YadamsurenG.O. SamdanJ. DangaaS. PhilipovS. Chemical and antiviral study on alkaloids from Papaver pseudocanescens M. Pop.Z. Naturforsch. C J. Biosci.2012671-2222810.1515/znc‑2012‑1‑20422486038
    [Google Scholar]
  37. ZhangY. GengX. TanY. LiQ. XuC. XuJ. HaoL. ZengZ. LuoX. LiuF. WangH. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system.Biomed. Pharmacother.202012711019510.1016/j.biopha.2020.11019532361161
    [Google Scholar]
  38. AbdelrahmanZ. LiM. WangX. Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses.Front. Immunol.20201155290910.3389/fimmu.2020.55290933013925
    [Google Scholar]
  39. WangM.Y. ZhaoR. GaoL.J. GaoX.F. WangD.P. CaoJ.M. SARS-CoV-2: Structure, biology, and structure-based therapeutics development.Front. Cell. Infect. Microbiol.20201058726910.3389/fcimb.2020.58726933324574
    [Google Scholar]
  40. CaoY. YangR. LeeI. ZhangW. SunJ. WangW. MengX. Characterization of the SARS‐CoV ‐2 E Protein: Sequence, structure, viroporin, and inhibitors.Protein. Sci.20213061114113010.1002/pro.407533813796
    [Google Scholar]
  41. ZhangJ. XiaoT. CaiY. ChenB. Structure of SARS-CoV-2 spike protein.Curr. Opin. Virol.20215017318210.1016/j.coviro.2021.08.01034534731
    [Google Scholar]
  42. AryaR. KumariS. PandeyB. MistryH. BihaniS.C. DasA. PrasharV. GuptaG.D. PanickerL. KumarM. Structural insights into SARS-CoV-2 proteins.J. Mol. Biol.2021433216672510.1016/j.jmb.2020.11.02433245961
    [Google Scholar]
  43. YeQ. WestA.M.V. SillettiS. CorbettK.D. Architecture and self‐assembly of the SARS‐CoV ‐2 nucleocapsid protein.Protein. Sci.20202991890190110.1002/pro.390932654247
    [Google Scholar]
  44. DuttaN.K. MazumdarK. GordyJ.T. The nucleocapsid protein of SARS–CoV-2: A target for vaccine development.J. Virol.20209413e00647-2010.1128/JVI.00647‑2032546606
    [Google Scholar]
  45. ChauhanA. AvtiP.K. ShekharN. PrajapatM. SarmaP. SangwanN. SinghJ. BhattacharyyaA. KumarS. KaurH. SharmaS. PrakashA. MedhiB. An insight into the simulation directed understanding of the mechanism in SARS CoV-2 N-CTD, dimer integrity, and RNA-binding: Identifying potential antiviral inhibitors.J. Biomol. Struct. Dyn.20224024139121392410.1080/07391102.2021.199646334751101
    [Google Scholar]
  46. MandalaV.S. McKayM.J. ShcherbakovA.A. DregniA.J. KolocourisA. HongM. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers.Nat. Struct. Mol. Biol.202027121202120810.1038/s41594‑020‑00536‑833177698
    [Google Scholar]
  47. NaickerS. YangC.W. HwangS.J. LiuB.C. ChenJ.H. JhaV. The novel coronavirus 2019 epidemic and kidneys.Kidney Int.202097582482810.1016/j.kint.2020.03.00132204907
    [Google Scholar]
  48. RohaniR DzulkharnienNSF HarunNH IliasIA Green approaches, potentials, and applications of zinc oxide nanoparticles in surface coatings and films.Bioinorg. Chem. Appl.20222022307774710.1155/2022/3077747
    [Google Scholar]
  49. BentonD.J. WrobelA.G. XuP. RoustanC. MartinS.R. RosenthalP.B. SkehelJ.J. GamblinS.J. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion.Nature.2020588783732733010.1038/s41586‑020‑2772‑032942285
    [Google Scholar]
  50. LuG. WangQ. GaoG.F. Bat-to-human: Spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond.Trends Microbiol.201523846847810.1016/j.tim.2015.06.00326206723
    [Google Scholar]
  51. MorrisG. BortolasciC.C. PuriB.K. OliveL. MarxW. O’NeilA. AthanE. CarvalhoA.F. MaesM. WalderK. BerkM. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach.Life Sci.202025811816610.1016/j.lfs.2020.11816632739471
    [Google Scholar]
  52. BourgonjeA.R. AbdulleA.E. TimensW. HillebrandsJ.L. NavisG.J. GordijnS.J. BollingM.C. DijkstraG. VoorsA.A. OsterhausA.D.M.E. VoortP.H.J. MulderD.J. GoorH. Angiotensin‐converting enzyme 2 ( ACE2 ), SARS‐CoV ‐2 and the pathophysiology of coronavirus disease 2019 ( COVID ‐19).J. Pathol.2020251322824810.1002/path.547132418199
    [Google Scholar]
  53. SridharS. NichollsJ. Pathophysiology of infection with SARS‐CoV ‐2— What is known and what remains a mystery.Respirology202126765266510.1111/resp.1409134041821
    [Google Scholar]
  54. HabashiN.M. CamporotaL. GattoL.A. NiemanG. Functional pathophysiology of SARS-CoV-2-induced acute lung injury and clinical implications.J. Appl. Physiol.2021130387789110.1152/japplphysiol.00742.202033444117
    [Google Scholar]
  55. WeberA. WasiliewP. KrachtM. Interleukin-1 (IL-1) pathway.Sci. Signal.20103105cm120086235
    [Google Scholar]
  56. DinarelloC.A. SimonA. van der MeerJ.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases.Nat. Rev. Drug Discov.201211863365210.1038/nrd380022850787
    [Google Scholar]
  57. GarlandaC. DinarelloC.A. MantovaniA. The interleukin-1 family: Back to the future.Immunity.20133961003101810.1016/j.immuni.2013.11.01024332029
    [Google Scholar]
  58. XuW. ZhangM. LiuH. WeiK. HeM. LiX. HuD. YangS. ZhengY. Antiviral activity of aconite alkaloids from Aconitum carmichaelii Debx.Nat. Prod. Res.201933101486149010.1080/14786419.2017.141638529271255
    [Google Scholar]
  59. ÖzçelikB. KartalM. OrhanI. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids.Pharm. Biol.201149439640210.3109/13880209.2010.51939021391841
    [Google Scholar]
  60. MohamedS.M. HassanE.M. IbrahimN.A. Cytotoxic and antiviral activities of aporphine alkaloids of Magnolia grandiflora L.Nat. Prod. Res.201024151395140210.1080/1478641090290695919764006
    [Google Scholar]
  61. FieldsJ.K. GüntherS. SundbergE.J. Structural basis of IL-1 family cytokine signaling.Front. Immunol.201910141210.3389/fimmu.2019.0141231281320
    [Google Scholar]
  62. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Borthwick, L., Ed.; Seminars in immunopathologySpringer2016
    [Google Scholar]
  63. BhagyaN. ChandrashekarK.R. Tetrandrine – A molecule of wide bioactivity.Phytochemistry.201612551310.1016/j.phytochem.2016.02.00526899361
    [Google Scholar]
  64. ThawabtehA. JumaS. BaderM. KaramanD. ScranoL. BufoS. KaramanR. The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens.Toxins2019111165610.3390/toxins1111065631717922
    [Google Scholar]
  65. ZouH. HeT. ChenX. Tetrandrine inhibits differentiation of proinflammatory subsets of T helper cells but spares de novo differentiation of iTreg cells.Int. Immunopharmacol.20196930731210.1016/j.intimp.2019.01.04030769211
    [Google Scholar]
  66. WangY. ZhengJ. IslamM.S. YangY. HuY. ChenX. The role of CD4 + FoxP3 + regulatory T cells in the immunopathogenesis of COVID-19: implications for treatment.Int. J. Biol. Sci.20211761507152010.7150/ijbs.5953433907514
    [Google Scholar]
  67. XuJ. LiuD. YinQ. GuoL. Tetrandrine suppresses β-glucan-induced macrophage activation via inhibiting NF-κB, ERK and STAT3 signaling pathways.Mol. Med. Rep.20161365177518410.3892/mmr.2016.518727121946
    [Google Scholar]
  68. BaoG. LiC. QiL. WangN. HeB. Tetrandrine protects against oxygen-glucose-serum deprivation/reoxygenation-induced injury via PI3K/AKT/NF-κB signaling pathway in rat spinal cord astrocytes.Biomed. Pharmacother.20168492593010.1016/j.biopha.2016.10.00727764754
    [Google Scholar]
  69. GaoL.N. FengQ.S. ZhangX.F. WangQ.S. CuiY.L. Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation.J. Orthop. Res.20163491557156810.1002/jor.2315526748661
    [Google Scholar]
  70. DangY. XuY. WuW. LiW. SunY. YangJ. ZhuY. ZhangC. Tetrandrine suppresses lipopolysaccharide-induced microglial activation by inhibiting NF-κB and ERK signaling pathways in BV2 cells.PLoS. One.201498e10252210.1371/journal.pone.010252225115855
    [Google Scholar]
  71. WuC.J. WangY.H. LinC.J. ChenH.H. ChenY.J. Tetrandrine down-regulates ERK/NF-κB signaling and inhibits activation of mesangial cells.Toxicol. In Vitro.20112581834184010.1016/j.tiv.2011.09.02422001142
    [Google Scholar]
  72. MaJ. ZhangY. LiR. YeJ. LiH. ZhangY. MaZ. LiJ. ZhongX. YangX. Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation.Eur. J. Pharmacol.201576422823910.1016/j.ejphar.2015.06.01726086859
    [Google Scholar]
  73. WangS. JiaJ. Oxymatrine attenuates diabetes-associated cognitive deficits in rats.Acta Pharmacol. Sin.201435333133810.1038/aps.2013.15824442148
    [Google Scholar]
  74. XuW.S. ZhaoK-K. MiaoX-H. NiW. CaiX. ZhangR-Q. WangJ.X. Effect of oxymatrine on the replication cycle of hepatitis B virus in vitro.World J. Gastroenterol.201016162028203710.3748/wjg.v16.i16.202820419842
    [Google Scholar]
  75. LuM.L. XiangX.H. XiaS.H.J.P.R. Potential signaling pathways involved in the clinical application of oxymatrine.Phytother. Res.20163071104111210.1002/ptr.5632
    [Google Scholar]
  76. MaoJ. HuY. ZhouA. ZhengB. LiuY. DuY. LiJ. LuJ. ZhouP. Oxymatrine reduces neuroinflammation in rat brain: A signaling pathway.Neural Regen. Res.20127302333233925538757
    [Google Scholar]
  77. GuzmanJ.R. KooJ.S. GoldsmithJ.R. MühlbauerM. NarulaA. JobinC.J.S.R. Oxymatrine prevents NF-κB nuclear translocation and ameliorates acute intestinal inflammation.Sci. Rep.20133162910.1038/srep01629
    [Google Scholar]
  78. YangZ. YinR. CongY. YangZ. ZhouE. WeiZ. LiuZ. CaoY. ZhangN. Oxymatrine lightened the inflammatory response of LPS-induced mastitis in mice through affecting NF-κB and MAPKs signaling pathways.Inflammation.20143762047205510.1007/s10753‑014‑9937‑725034832
    [Google Scholar]
  79. WarowickaA. NawrotR. Goździcka-JózefiakA. Antiviral activity of berberine.Arch. Virol.202016591935194510.1007/s00705‑020‑04706‑332594322
    [Google Scholar]
  80. LiuS.C. LeeH.P. HungC.Y. TsaiC.H. LiT.M. TangC.H. Berberine attenuates CCN2-induced IL-1β expression and prevents cartilage degradation in a rat model of osteoarthritis.Toxicol. Appl. Pharmacol.20152891202910.1016/j.taap.2015.08.02026344001
    [Google Scholar]
  81. LiW. YinN. TaoW. WangQ. FanH. WangZ. Berberine suppresses IL-33-induced inflammatory responses in mast cells by inactivating NF-κB and p38 signaling.Int. Immunopharmacol.201966829010.1016/j.intimp.2018.11.00930445310
    [Google Scholar]
  82. LiG. FanY. LaiY. HanT. LiZ. ZhouP. PanP. WangW. HuD. LiuX. ZhangQ. WuJ. Coronavirus infections and immune responses.J. Med. Virol.202092442443210.1002/jmv.2568531981224
    [Google Scholar]
  83. TodorovD. HinkovA. ShishkovaK. ShishkovS. Antiviral potential of Bulgarian medicinal plants.Phytochem. Rev.201413252553810.1007/s11101‑014‑9357‑1
    [Google Scholar]
  84. ChatterjeeP. SealS. MukherjeeS. KunduR. MukherjeeS. RayS. MukhopadhyayS. MajumdarS.S. BhattacharyaS. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.J. Biol. Chem.201328839283242833010.1074/jbc.C113.49547323943623
    [Google Scholar]
  85. DongX.Q. YuW.H. HuY.Y. ZhangZ.Y. HuangM. Oxymatrine reduces neuronal cell apoptosis by inhibiting Toll-like receptor 4/nuclear factor kappa-B-dependent inflammatory responses in traumatic rat brain injury.Inflamm. Res.201160653353910.1007/s00011‑010‑0300‑721190123
    [Google Scholar]
/content/journals/mroc/10.2174/1570193X20666230821143410
Loading
/content/journals/mroc/10.2174/1570193X20666230821143410
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test