Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1570-193X
  • E-ISSN: 1875-6298

Abstract

Free radical reactions occupy an important position in synthetic organic chemistry as well as medicinal chemistry, significantly complementing and extending the synthesis of coumarin or quinolin-2-one compounds. Moreover, the use of constructing coumarin or quinolin-2-one compounds functionalized at the C3 position has certain advantages over traditional noble metal-catalyzed or high-temperature cyclization, which is more in line with the advocates of green chemistry. The design of alkenes or alkynes as radical acceptors for cascade reactions presents a novel and robust approach to obtaining coumarin or quinolin-2-one molecules. These radical cascade cyclization reactions have been well explored and studied over the past decade. As a result, we have compiled a mini-review of the rapidly developing cutting-edge research in this field, featuring typical examples and in-depth exploration of the underlying mechanisms.

Loading

Article metrics loading...

/content/journals/mroc/10.2174/0118756298278048231205053801
2024-01-04
2025-03-30
Loading full text...

Full text loading...

References

  1. AntunesE.M. CoppB.R. Davies-ColemanM.T. SamaaiT. Pyrroloiminoquinone and related metabolites from marine sponges.Nat. Prod. Rep.2005221627210.1039/b407299p 15692617
    [Google Scholar]
  2. BorgesF. RoleiraF. MilhazesN. SantanaL. UriarteE. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity.Curr. Med. Chem.200512888791610.2174/0929867053507315 15853704
    [Google Scholar]
  3. MedinaF.G. MarreroJ.G. Macías-AlonsoM. GonzálezM.C. Córdova-GuerreroI. Teissier GarcíaA.G. Osegueda-RoblesS. Coumarin heterocyclic derivatives: Chemical synthesis and biological activity.Nat. Prod. Rep.201532101472150710.1039/C4NP00162A 26151411
    [Google Scholar]
  4. WeiW. WenJ. YangD. GuoM. WangY. YouJ. WangH. Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins.Chem. Commun. 201551476877110.1039/C4CC08117J 25421259
    [Google Scholar]
  5. YangW. YangS. LiP. WangL. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions.Chem. Commun. 201551357520752310.1039/C5CC00878F 25838160
    [Google Scholar]
  6. MiX. WangC. HuangM. ZhangJ. WuY. WuY. Silver-catalyzed synthesis of 3-phosphorated coumarins via radical cyclization of alkynoates and dialkyl H-phosphonates.Org. Lett.201416123356335910.1021/ol5013839 24921182
    [Google Scholar]
  7. LiY. LuY. QiuG. DingQ. Copper-catalyzed direct trifluoromethylation of propiolates: Construction of trifluoromethylated coumarins.Org. Lett.201416164240424310.1021/ol501939m 25084051
    [Google Scholar]
  8. LiuB.Y. ZhangC. ZengK.W. LiJ. GuoX.Y. ZhaoM.B. TuP.F. JiangY. Anti-inflammatory prenylated phenylpropenols and coumarin derivatives from Murraya exotica.J. Nat. Prod.2018811223310.1021/acs.jnatprod.7b00518 29303577
    [Google Scholar]
  9. DikshaC. PoojaB. SoumavaS. TanayP. Synthesis and biological properties of coumarin analogue: A brief review.Lett. Org. Chem.20221936238710.2174/1570178618666210202152452
    [Google Scholar]
  10. LiuY.P. YanG. GuoJ.M. LiuY.Y. LiY.J. ZhaoY.Y. QiangL. FuY.H. Prenylated coumarins from the fruits of manilkara zapota with potential anti-inflammatory effects and anti-HIV activities.J. Agric. Food Chem.20196743119421194710.1021/acs.jafc.9b04326 31622090
    [Google Scholar]
  11. ChenZ. LiuN.W. BolteM. RenH. ManolikakesG. Visible-light mediated 3-component synthesis of sulfonylated coumarins from sulfur dioxide.Green Chem.201820133059307010.1039/C8GC00838H
    [Google Scholar]
  12. HuaJ. FangZ. XuJ. BianM. LiuC. HeW. ZhuN. YangZ. GuoK. Electrochemical oxidative cyclization of activated alkynes with diselenides or disulfides: Access to functionalized coumarins or quinolinones.Green Chem.201921174706471110.1039/C9GC02131K
    [Google Scholar]
  13. YuY. ZhuangS. LiuP. SunP. Cyanomethylation and cyclization of aryl alkynoates with acetonitrile under transition-metal-free conditions: Synthesis of 3-cyanomethylated coumarins.J. Org. Chem.20168122114891149510.1021/acs.joc.6b02155 27768307
    [Google Scholar]
  14. ZhengD. YuJ. WuJ. Generation of sulfonyl radicals from aryldiazonium tetrafluoroborates and sulfur dioxide: The synthesis of 3‐sulfonated coumarins.Angew. Chem. Int. Ed.20165539119251192910.1002/anie.201607292 27603499
    [Google Scholar]
  15. LiuK. SongC. LeiA. Recent advances in iodine mediated electrochemical oxidative cross-coupling.Org. Biomol. Chem.201816142375238710.1039/C8OB00063H 29546915
    [Google Scholar]
  16. ZhangY. SunK. LvQ. ChenX. QuL. YuB. Recent applications of radical cascade reaction in the synthesis of functionalized 1-indenones.Chin. Chem. Lett.20193071361136810.1016/j.cclet.2019.03.034
    [Google Scholar]
  17. ZhangB. StuderA. Recent advances in the synthesis of nitrogen heterocycles via radical cascade reactions using isonitriles as radical acceptors.Chem. Soc. Rev.201544113505352110.1039/C5CS00083A 25882084
    [Google Scholar]
  18. TaniguchiT. Recent advances in reactions of heteroatom-centered radicals.Synthesis201749163511353410.1055/s‑0036‑1588481
    [Google Scholar]
  19. StuderA. CurranD.P. Catalysis of radical reactions: A radical chemistry perspective.Angew. Chem. Int. Ed.20165515810210.1002/anie.201505090 26459814
    [Google Scholar]
  20. WilckenR. ZimmermannM.O. LangeA. JoergerA.C. BoecklerF.M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology.J. Med. Chem.20135641363138810.1021/jm3012068 23145854
    [Google Scholar]
  21. XuZ. YangZ. LiuY. LuY. ChenK. ZhuW. Halogen bond: Its role beyond drug-target binding affinity for drug discovery and development.J. Chem. Inf. Model.2014541697810.1021/ci400539q 24372485
    [Google Scholar]
  22. SkellP.S. TraynhamJ.G. Radical brominations of alkyl bromides and the nature of. beta.-bromoalkyl radicals.Acc. Chem. Res.198417516016610.1021/ar00101a002
    [Google Scholar]
  23. RuassM. Acc. Chem. Res.1990238710.1021/ar00171a006
    [Google Scholar]
  24. EastonC.J. HuttonC.A. Recent developments in the use of N -phthaloyl-amino acid derivatives in synthesis.Synlett19981998545746610.1055/s‑1998‑1686
    [Google Scholar]
  25. QiuG. LiuT. DingQ. Tandem oxidative radical brominative addition of activated alkynes and spirocyclization: Switchable synthesis of 3-bromocoumarins and 3-bromo spiro-[4,5] trienone.Org. Chem. Front.20163451051510.1039/C6QO00041J
    [Google Scholar]
  26. NiS. CaoJ. MeiH. HanJ. LiS. PanY. Sunlight-promoted cyclization versus decarboxylation in the reaction of alkynoates with N-iodosuccinimide: Easy access to 3-iodocoumarins.Green Chem.201618143935393910.1039/C6GC01027J
    [Google Scholar]
  27. KongH. LiQ. YinY. HuangM. KimJ.K. ZhuY. LiY. WuY. An efficient light on–off one-pot method for the synthesis of 3-styryl coumarins from aryl alkynoates.Org. Biomol. Chem.201917184621462810.1039/C9OB00421A 31017597
    [Google Scholar]
  28. WuX. JiaM. HuangM. KimJ.K. ZhaoZ. LiuJ. XiJ. LiY. WuY. A visible-light-induced “on–off” one-pot synthesis of 3-arylacetylene coumarins with AIE properties.Org. Biomol. Chem.202018173346335310.1039/D0OB00479K 32301954
    [Google Scholar]
  29. JiaC. PiaoD. KitamuraT. FujiwaraY. New method for preparation of coumarins and quinolinones via Pd-catalyzed intramolecular hydroarylation of C-C triple bonds.J. Org. Chem.200065227516752210.1021/jo000861q 11076610
    [Google Scholar]
  30. ZhouY. ZhangX. ZhangY. RuanL. ZhangJ. Zhang-NegrerieD. DuY. Iodocyclization of N -arylpropynamides mediated by hypervalent iodine reagent: Divergent synthesis of iodinated quinolin-2-ones and spiro[4,5]trienones.Org. Lett.201719115015310.1021/acs.orglett.6b03455 28001422
    [Google Scholar]
  31. PramanikM. MathuriA. SauS. DasM. MalP. Chlorinative cyclization of aryl alkynoates using NCS and 9-mesityl-10-methylacridinium perchlorate photocatalyst.Org. Lett.202123208088809210.1021/acs.orglett.1c03100 34558906
    [Google Scholar]
  32. YanC.Y. WuZ.W. HeX.Y. MaY.H. PengX.R. WangL. YangQ.Q. Visible-light-induced tandem radical brominative addition/cyclization of activated alkynes with CBr 4 for the synthesis of 3-bromocoumarins.J. Org. Chem.202388164765210.1021/acs.joc.2c01721 36480338
    [Google Scholar]
  33. PetrovK. ZhangY. CarterM. CockerillG. Optimization and SAR for dual ErbB-1/ErbB-2 tyrosine kinase inhibition in the 6-furanylquinazoline series.Bioorg. Med. Chem. Lett.200616468610.1016/j.bmcl.2006.05.090 16777410
    [Google Scholar]
  34. NoshiM.N. El-awaA. TorresE. FuchsP.L. Conversion of cyclic vinyl sulfones to transposed vinyl phosphonates.J. Am. Chem. Soc.200712936112421124710.1021/ja072890p 17696536
    [Google Scholar]
  35. DesrosiersJ.N. CharetteA.B. Catalytic enantioselective reduction of β,β‐disubstituted vinyl phenyl sulfones by using bisphosphine monoxide ligands.Angew. Chem. Int. Ed.200746315955595710.1002/anie.200701367
    [Google Scholar]
  36. KothaS. ChavanA.S. Design and synthesis of benzosultine-sulfone as a o-xylylene precursor via cross-enyne metathesis and rongalite: Further expansion to polycyclics via regioselective Diels-Alder reaction.J. Org. Chem.201075124319432210.1021/jo100655c 20496902
    [Google Scholar]
  37. WangX. LiuT. ZhengD. ZhongQ. WuJ. Synthesis of 3-(((2,3-dihydrobenzofuran-3-yl)methyl)sulfonyl) coumarins through the reaction of 2-(allyloxy)anilines, sulfur dioxide, and aryl propiolates.Org. Chem. Front.20174122455245810.1039/C7QO00787F
    [Google Scholar]
  38. ChenP. ChenZ. XiongB. LiangY. TangK. XieJ. Visible-light-mediated cascade cyanoalkylsulfonylation/cyclization of alkynoates leading to coumarins via SO2 insertion.Org. Biomol. Chem.2021193181319010.1039/D1OB00142F 33885572
    [Google Scholar]
  39. KanyivaK.S. HamadaD. MakinoS. TakanoH. ShibataT. α‐amino acid sulfonamides as versatile sulfonylation reagents: Silver‐catalyzed synthesis of coumarins and oxindoles by radical cyclization.Eur. J. Org. Chem.20182018435905590910.1002/ejoc.201800901
    [Google Scholar]
  40. GaoW.C. LiuT. ZhangB. LiX. WeiW.L. LiuQ. TianJ. ChangH.H. Synthesis of 3-sulfenylated coumarins: BF3·Et2 O-mediated electrophilic cyclization of aryl alkynoates using N -sulfanylsuccinimides.J. Org. Chem.20168122112971130410.1021/acs.joc.6b02271 27704858
    [Google Scholar]
  41. MathuriA. PalB. PramanikM. MalP. Chemodivergent chalcogenation of aryl alkynoates or N -arylpropynamides using 9-mesityl-10-methylacridinium perchlorate photocatalyst.J. Org. Chem.20238814100961011010.1021/acs.joc.3c00926 37394814
    [Google Scholar]
  42. WuW. AnY. LiJ. YangS. ZhuZ. JiangH. Iodine-catalyzed cascade annulation of alkynes with sodium arylsulfinates: Assembly of 3-sulfenylcoumarin and 3-sulfenylquinolinone derivatives.Org. Chem. Front.2017491751175610.1039/C7QO00326A
    [Google Scholar]
  43. NogueiraC.W. RochaJ.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds.Arch. Toxicol.201185111313135910.1007/s00204‑011‑0720‑3 21720966
    [Google Scholar]
  44. NogueiraC. ZeniG. Organoselenium and organotellurium compounds: Toxicology and pharmacology.Chem. Rev.20041046255628510.1021/cr0406559 15584701
    [Google Scholar]
  45. MannaD. MugeshG. Regioselective deiodination of thyroxine by iodothyronine deiodinase mimics: An unusual mechanistic pathway involving cooperative chalcogen and halogen bonding.J. Am. Chem. Soc.201213494269427910.1021/ja210478k 22352472
    [Google Scholar]
  46. MantovaniA.C. GoulartT.A.C. BackD.F. MenezesP.H. ZeniG. Iron(III) chloride and diorganyl diselenides-mediated 6-endo-dig cyclization of arylpropiolates and arylpropiolamides leading to 3-organoselenyl-2H-coumarins and 3-organoselenyl-quinolinones.J. Org. Chem.20147921105261053610.1021/jo502199q 25271674
    [Google Scholar]
  47. FangJ.D. YanX.B. ZhouL. WangY.Z. LiuX.Y. Synthesis of 3‐organoselenyl‐2 H ‐coumarins from propargylic aryl ethers via oxidative radical cyclization.Adv. Synth. Catal.201936191985199010.1002/adsc.201801565
    [Google Scholar]
  48. SahooH. GrandhiG.S. RamakrishnaI. BaidyaM. Metal-free switchable ortho/ipso -cyclization of N -aryl alkynamides: Divergent synthesis of 3-selenyl quinolin-2-ones and azaspiro[4,5]trienones.Org. Biomol. Chem.20191748101631016610.1039/C9OB02177A 31777902
    [Google Scholar]
  49. ChuX.Q. ZiY. MengH. XuX.P. JiS.J. Radical phosphinylation of α,α-diaryl allylic alcohols with concomitant 1,2-aryl migration.Chem. Commun.201450577642764510.1039/c4cc02114b 24893594
    [Google Scholar]
  50. ZhangB. DaniliucC.G. StuderA. 6-Phosphorylated phenanthridines from 2-isocyanobiphenyls via radical C-P and C-C bond formation.Org. Lett.201416125025310.1021/ol403256e 24320135
    [Google Scholar]
  51. HouH. XuY. YangH. YanC. ShiY. ZhuS. Regioselective radical arylation: Silver-mediated synthesis of 3-phosphorylated coumarins, quinolin-2(1 H)-one and benzophosphole oxides.Org. Biomol. Chem.201917358175818410.1039/C9OB01585J 31464339
    [Google Scholar]
  52. UnohY. HiranoK. MiuraM. Metal-free electrophilic phosphination/cyclization of alkynes.J. Am. Chem. Soc.2017139176106610910.1021/jacs.7b02977 28412816
    [Google Scholar]
  53. LiuD. ChenJ.Q. WangX.Z. XuP.F. Metal‐free, visible‐light‐promoted synthesis of 3‐phosphorylated coumarins via radical C−P/C−C bond formation.Adv. Synth. Catal.2017359162773277710.1002/adsc.201700293
    [Google Scholar]
  54. OstrovD.A. Hernández PradaJ.A. CorsinoP.E. FintonK.A. LeN. RoweT.C. Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening.Antimicrob. Agents Chemother.200751103688369810.1128/AAC.00392‑07 17682095
    [Google Scholar]
  55. MurataC. MasudaT. KamochiY. Improvement of fluorescence characteristics of coumarins: syntheses and fluorescence properties of 6-methoxycoumarin and benzocoumarin derivatives as novel fluorophores emitting in the longer wavelength region and their application to analytical reagents.Chem. Pharm. Bull. 20055375075810.1248/cpb.53.750 15997129
    [Google Scholar]
  56. AbdelhafezO.M. AminK.M. BatranR.Z. MaherT.J. NadaS.A. SethumadhavanS. Synthesis, anticoagulant and PIVKA-II induced by new 4-hydroxycoumarin derivatives.Bioorg. Med. Chem.201018103371337810.1016/j.bmc.2010.04.009 20435480
    [Google Scholar]
  57. MiX. WangC. HuangM. WuY. WuY. Preparation of 3-Acyl-4-arylcoumarins via metal-free tandem oxidative acylation/cyclization between alkynoates with aldehydes.J. Org. Chem.201580114815510.1021/jo502220b 25495248
    [Google Scholar]
  58. KawaaiK. YamaguchiT. YamaguchiE. EndoS. TadaN. IkariA. ItohA. Photoinduced generation of acyl radicals from simple aldehydes, access to 3-acyl-4-arylcoumarin derivatives, and evaluation of their antiandrogenic activities.J. Org. Chem.20188341988199610.1021/acs.joc.7b02933 29327585
    [Google Scholar]
  59. ZhangX. LiY. HaoX. JinK. ZhangR. DuanC. Recyclable alkylated fac-Ir(ppy)3 complex as a visible-light photoredox catalyst for the synthesis of 3-trifluoromethylated and 3-difluoroacetylated coumarins.Tetrahedron201874517358736310.1016/j.tet.2018.10.075
    [Google Scholar]
  60. ChenL. WuL. DuanW. WangT. LiL. ZhangK. ZhuJ. PengZ. XiongF. Photoredox-catalyzed cascade radical cyclization of ester arylpropiolates with CF 3 SO 2 Cl to construct 3-trifluoromethyl coumarin derivatives.J. Org. Chem.201883158607861410.1021/acs.joc.8b00581 29878780
    [Google Scholar]
  61. FuW. ZhuM. ZouG. XuC. WangZ. JiB. Visible-light-mediated radical aryldifluoroacetylation of alkynes with ethyl bromodifluoroacetate for the synthesis of 3-difluoroacetylated coumarins.J. Org. Chem.20158094766477010.1021/acs.joc.5b00305 25843358
    [Google Scholar]
  62. FuW. SunY. LiX. Silver-catalyzed monofluoromethylation of alkynoates with sodium monofluoroalkanesulfinate (CH 2 FSO 2 Na) to access 3-monofluoromethylated coumarins.Synth. Commun.202050338839810.1080/00397911.2019.1697452
    [Google Scholar]
  63. LiuT. DingQ. ZongQ. QiuG. Radical 5-exo cyclization of alkynoates with 2-oxoacetic acids for synthesis of 3-acylcoumarins.Org. Chem. Front.20152667067310.1039/C5QO00029G
    [Google Scholar]
  64. FengS. XieX. ZhangW. LiuL. ZhongZ. XuD. SheX. Visible-light-promoted dual C–C bond formations of alkynoates via a domino radical addition/cyclization reaction: A synthesis of coumarins.Org. Lett.201618153846384910.1021/acs.orglett.6b01857 27443889
    [Google Scholar]
  65. LiuT. DingQ. QiuG. WuJ. Tandem metal-free oxidative radical 5-exo dearomative spirocyclization and ester migration: Generation of 3-functionalized coumarins from alkynoates.Tetrahedron201672227928410.1016/j.tet.2015.11.018
    [Google Scholar]
  66. PanC. ChenR. ShaoW. YuJ.T. Metal-free radical addition/cyclization of alkynoates with xanthates towards 3-(β-carbonyl)coumarins.Org. Biomol. Chem.201614389033903910.1039/C6OB01732K 27604378
    [Google Scholar]
  67. ZhangW. YangC. PanY.L. LiX. ChengJ.P. Synthesis of 3-cyanomethylated coumarins by a visible-light-mediated direct cyanomethylation of aryl alkynoates.Org. Biomol. Chem.201816325788579210.1039/C8OB01513A 30059123
    [Google Scholar]
  68. ZengP. HuangX. TangW. ChenZ. Copper-catalyzed cascade radical cyclization of alkynoates: construction of aryldifluoromethylated coumarins.Org. Biomol. Chem.20211022
    [Google Scholar]
  69. ZhouQ. XiongF.T. ChenP. XiongB.Q. TangK.W. LiuY. The visible-light-induced acylation/cyclization of alkynoates with acyl oximes for the construction of 3-acylcoumarins.Org. Biomol. Chem.202119419012902010.1039/D1OB01568K 34610069
    [Google Scholar]
  70. YangX. XiaY. TongJ. OuyangL. LaiY. LuoR. Photoinduced radical cascade cyclization of acetylenic acid esters with oxime esters to access cyanalkylated coumarins.Org. Biomol. Chem.2022205239524410.1039/D2OB00612J 35723258
    [Google Scholar]
  71. ZhouN. WangK. ZhaoT. LiuR. RuiM. ZhaoX. FengJ. LuK. Design and synthesis of fluoro‐containing hypervalent iodane (III) reagents for visible‐light‐triggered cyclization of alkynoates to 3‐fluoroalkylated coumarins.Asian J. Org. Chem.2022119e20220038610.1002/ajoc.202200386
    [Google Scholar]
  72. MannaS. PrabhuK.R. Visible-light-mediated vicinal difunctionalization of activated alkynes with boronic acids: Substrate-controlled rapid access to 3-alkylated coumarins and unsaturated spirocycles.Org. Lett.202325581081510.1021/acs.orglett.2c04333 36706367
    [Google Scholar]
/content/journals/mroc/10.2174/0118756298278048231205053801
Loading
/content/journals/mroc/10.2174/0118756298278048231205053801
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test