Skip to content
2000
Volume 24, Issue 11
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

A large family of enzymes with the function of hydrolyzing peptide bonds, called peptidases or cysteine proteases (CPs), are divided into three categories according to the peptide chain involved. CPs catalyze the hydrolysis of amide, ester, thiol ester, and thioester peptide bonds. They can be divided into several groups, such as papain-like (CA), viral chymotrypsin-like CPs (CB), papainlike endopeptidases of RNA viruses (CC), legumain-type caspases (CD), and showing active residues of His, Glu/Asp, Gln, Cys (CE). The catalytic mechanism of CPs is the essential cysteine residue present in the active site. These mechanisms are often studied through computational methods that provide new information about the catalytic mechanism and identify inhibitors. The role of computational methods during drug design and development stages is increasing. Methods in Computer-Aided Drug Design (CADD) accelerate the discovery process, increase the chances of selecting more promising molecules for experimental studies, and can identify critical mechanisms involved in the pathophysiology and molecular pathways of action. Molecular dynamics (MD) simulations are essential in any drug discovery program due to their high capacity for simulating a physiological environment capable of unveiling significant inhibition mechanisms of new compounds against target proteins, especially CPs. Here, a brief approach will be shown on MD simulations and how the studies were applied to identify inhibitors or critical information against cysteine protease from several microorganisms, such as (cruzain), (rhodesain), . (falcipain), and SARS-CoV-2 (Mpro). We hope the readers will gain new insights and use our study as a guide for potential compound identifications using MD simulations.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/1389557523666230901152257
2024-06-01
2024-11-08
Loading full text...

Full text loading...

/content/journals/mrmc/10.2174/1389557523666230901152257
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test