Full text loading...
-
GlmU Inhibitors as Promising Antibacterial Agents: A Review
- Source: Mini Reviews in Medicinal Chemistry, Volume 23, Issue 3, Feb 2023, p. 343 - 360
-
- 01 Feb 2023
Abstract
Bacterial infections are a major cause of mortality and morbidity in humans throughout the world. Infections due to resistant bacterial strains such as methicillin-resistant Staphyloccocusaureus vancomycin, resistant Enterococci, Klebsiella pneumoniae, Staphylococcus aureus, and Mycobacterium are alarming. Hence the development of new antibacterial agents, which act via a novel mechanism of action, became a priority in antibacterial research. One such approach to overcome bacterial resistance is to target novel protein and develop antibacterial agents that act via different mechanisms of action. Bacterial GlmU is one such bifunctional enzyme that catalyzes the two consecutive reactions during the biosynthesis of uridine 5′-diphospho-Nacetylglucosamine, an essential precursor for the biosynthesis of bacterial cell wall peptidoglycan. This enzyme comprises two distinct active sites; acetyltransferase and uridyltransferase and both these active sites act independently during catalytic reactions. GlmU is considered an attractive target for the design and development of newer antibacterial agents due to its important role in bacterial cell wall synthesis and the absence of comparable enzymes in humans. Availability of three dimensions X-crystallographic structures of GlmU and their known catalytic mechanism from different bacterial strains have instigated research efforts for the development of novel antibacterial agents. Several GlmU inhibitors belonging to different chemical classes like 2- phenylbenzofuran derivative, quinazolines, aminoquinazolines, sulfonamides, arylsulfonamide, D-glucopyranoside 6-phosphates, terreic acid, iodoacetamide, N-ethyl maleimide, and Nethylmaleimide etc., have been reported in the literature. In the present review, we present an update on GlmU inhibitors and their associated antibacterial activities. This review may be useful for the design and development of novel GlmU inhibitors with potent antibacterial activity.