Skip to content
2000
Volume 12, Issue 11
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Telomerase is a ribonucleoprotein complex that elongates telomeric DNA and appears to play an important part in the cellular immortalization of cancers. In the screening of potent inhibitors of human telomerase, several inhibitors have been discovered from natural and chemical sources. Some compounds potently inhibit the activity of human telomerase. Rubromycins and fatty acids such as β-rubromycin and oleic acid, respectively, were found to be inhibitors of human telomerase. The IC50 values of β-rubromycin and oleic acid were 8.60 and 8.78 μM, respectively. A kinetic study revealed that these compounds competitively inhibited the activity of telomerase with respect to the substrate of the primer and dNTP. The energy-minimized three-dimensional structure of β-rubromycin and oleic acid was calculated and designed. The V-shaped curve and molecule length of 18.7-20.3 Å in these compound structures were suggested to be important for telomerase inhibition. The three-dimensional structure of the active site of telomerase (i.e., the binding site of the primer and dNTP substrate) might have a “pocket” that could “join” these compounds. These results appear to suggest a potential structure for the development of more potent inhibitors of human telomerase.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/138955712802762220
2012-10-01
2025-01-14
Loading full text...

Full text loading...

/content/journals/mrmc/10.2174/138955712802762220
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test