Skip to content
2000
image of Recent Development in Hydantoins, Thiohydantoins, and Selenohydantoins as Anticancer Agents: Structure-activity Relationship and Design Strategies

Abstract

Hydantoin, a five-membered heterocyclic scaffold, is regarded as a crucial scaffold in medicinal chemistry. Hydantoins have been useful in synthesizing medicines like nilutamide, enzalutamide, and apalutamide. Thiohydantoin and selenohydantoin have been discovered as two separate types of hydantoin. There are two hydrogen bond donors, two hydrogen bond acceptors, and four substitution sites. These characteristics have led to the design, synthesis, and expansion of hydantoin derivatives' biological and pharmacological effects against numerous types of malignancies. This study reviews the recent contributions of hydantoin and its isosteric variants to medicinal chemistry. To emphasize their significance, certain significant compounds based on hydantoins and their structure activity relationships (SAR) are briefly discussed. We thoroughly analyzed each scaffolds' structural characteristics and SAR, and these scaffolds may one day show potential anticancer activities.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575329643241206101210
2025-01-10
2025-04-23
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Weiderpass E. Soerjomataram I. The ever‐increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021 127 16 3029 3030 10.1002/cncr.33587 34086348
    [Google Scholar]
  2. Chen S. Cao Z. Prettner K. Kuhn M. Yang J. Jiao L. Wang Z. Li W. Geldsetzer P. Bärnighausen T. Bloom D.E. Wang C. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncol. 2023 9 4 465 472 10.1001/jamaoncol.2022.7826 36821107
    [Google Scholar]
  3. Guida F. Kidman R. Ferlay J. Schüz J. Soerjomataram I. Kithaka B. Ginsburg O. Mailhot Vega R.B. Galukande M. Parham G. Vaccarella S. Canfell K. Ilbawi A.M. Anderson B.O. Bray F. dos-Santos-Silva I. McCormack V. Global and regional estimates of orphans attributed to maternal cancer mortality in 2020. Nat. Med. 2022 28 12 2563 2572 10.1038/s41591‑022‑02109‑2 36404355
    [Google Scholar]
  4. Ferlay J. Ervik M. Lam F. Laversanne M. Colombet M. Mery L. Piñeros M. Znaor A. Soerjomataram I. Bray F. Global Cancer Observatory: Cancer Today. Lyon, France International Agency for Research on Cancer 2024
    [Google Scholar]
  5. Ferlay J. Colombet M. Soerjomataram I. Parkin D.M. Piñeros M. Znaor A. Bray F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021 149 4 778 789 10.1002/ijc.33588 33818764
    [Google Scholar]
  6. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  7. Ali I. Lone M. Al-Othman Z. Al-Warthan A. Sanagi M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets 2015 16 7 711 734 10.2174/1389450116666150309115922 25751009
    [Google Scholar]
  8. Jampilek J. Heterocycles in medicinal chemistry. Molecules 2019 24 21 3839 10.3390/molecules24213839 31731387
    [Google Scholar]
  9. Hamama W.S. Ismail M.A. Soliman M. Shaaban S. Zoorob H.H. Behavior of 2‐iminothiazolidin‐4‐one with different reagents. J. Heterocycl. Chem. 2011 48 5 1169 1174 10.1002/jhet.628
    [Google Scholar]
  10. Abdel-Wahab B. Shaaban S. Thiazolothiadiazoles and thiazolooxadiazoles: Synthesis and biological applications. Synthesis 2014 46 13 1709 1716 10.1055/s‑0033‑1338627
    [Google Scholar]
  11. Sayed A.R. Al-Faiyz Y.S. Elsawy H. Shaaban S. Mohamed M.A. Synthesis and biochemical studies of novel Mon-Azothiazoles and Bis-Azothiazoles based on 2-(4-(Dimethylamino)Benzylidene)Hydrazine-1-Carbothioamide. Polycycl. Aromat. Compd. 2023 43 3 2644 2655 10.1080/10406638.2022.2049326
    [Google Scholar]
  12. Meusel M. Gütschow M. Recent developments in hydantoin chemistry. A review. Org. Prep. Proced. Int. 2004 36 5 391 443 10.1080/00304940409356627
    [Google Scholar]
  13. Cho S. Kim S.H. Shin D. Recent applications of hydantoin and thiohydantoin in medicinal chemistry. Eur. J. Med. Chem. 2019 164 517 545 10.1016/j.ejmech.2018.12.066 30622025
    [Google Scholar]
  14. Mezoughi A.B. Mohammed W.A. Ettarhouni Z.O. Recent biological applications and chemical synthesis of Thiohydantoins. J. Chem. Rev. 2021 1 3 196 218 10.22034/jcr.2021.285244.1111
    [Google Scholar]
  15. Kumar V. Designed synthesis of diversely substituted hydantoins and hydantoin-based hybrid molecules: A personal account. Synlett 2021 32 19 1897 1910 10.1055/a‑1480‑6474
    [Google Scholar]
  16. Ware E. The chemistry of the hydantoins. Chem. Rev. 1950 46 3 403 470 10.1021/cr60145a001 24537833
    [Google Scholar]
  17. Sallam A.A. Mohyeldin M.M. Foudah A.I. Akl M.R. Nazzal S. Meyer S.A. Liu Y.Y. El Sayed K.A. Marine natural products-inspired phenylmethylene hydantoins with potent in vitro and in vivo antitumor activities via suppression of Brk and FAK signaling. Org. Biomol. Chem. 2014 12 28 5295 5303 10.1039/C4OB00553H 24927150
    [Google Scholar]
  18. Liton A.K. Islam M.R. Synthesis of hydantoin and thiohydantoin related compounds from benzil and study of their cytotoxicity. Bangladesh J. Pharmacol. 2008 1 1 10 15 10.3329/bjp.v1i1.481
    [Google Scholar]
  19. Zhang M. Liang Y.R. Li H. Liu M.M. Wang Y. Design, synthesis, and biological evaluation of hydantoin bridged analogues of combretastatin A-4 as potential anticancer agents. Bioorg. Med. Chem. 2017 25 24 6623 6634 10.1016/j.bmc.2017.10.045 29126741
    [Google Scholar]
  20. Xie H. Liang J.J. Wang Y.L. Hu T.X. Wang J.Y. Yang R.H. Yan J.K. Zhang Q.R. Xu X. Liu H.M. Ke Y. The design, synthesis and anti-tumor mechanism study of new androgen receptor degrader. Eur. J. Med. Chem. 2020 204 112512 10.1016/j.ejmech.2020.112512 32736229
    [Google Scholar]
  21. Jung M.E. Ouk S. Yoo D. Sawyers C.L. Chen C. Tran C. Wongvipat J. Structure-activity relationship for thiohydantoin androgen receptor antagonists for castration-resistant prostate cancer (CRPC). J. Med. Chem. 2010 53 7 2779 2796 10.1021/jm901488g 20218717
    [Google Scholar]
  22. Zhang N. Ma S. Recent development of membrane-active molecules as antibacterial agents. Eur. J. Med. Chem. 2019 184 111743 10.1016/j.ejmech.2019.111743 31586478
    [Google Scholar]
  23. Handzlik J. Szymańska E. Chevalier J. Otrębska E. Kieć-Kononowicz K. Pagès J.M. Alibert S. Amine–alkyl derivatives of hydantoin: New tool to combat resistant bacteria. Eur. J. Med. Chem. 2011 46 12 5807 5816 10.1016/j.ejmech.2011.09.032 22000919
    [Google Scholar]
  24. Fujisaki F. Shoji K. Shimodouzono M. Kashige N. Miake F. Sumoto K. Antibacterial activity of 5-dialkylaminomethylhydantoins and related compounds. Chem. Pharm. Bull. (Tokyo) 2010 58 8 1123 1126 10.1248/cpb.58.1123 20686274
    [Google Scholar]
  25. Sondhi S.M. Singh J. Kumar A. Jamal H. Gupta P.P. Synthesis of amidine and amide derivatives and their evaluation for anti-inflammatory and analgesic activities. Eur. J. Med. Chem. 2009 44 3 1010 1015 10.1016/j.ejmech.2008.06.029 18701196
    [Google Scholar]
  26. Lesuisse D. Mauger J. Nemecek C. Maignan S. Boiziau J. Harlow G. Hittinger A. Ruf S. Strobel H. Nair A. Ritter K. Malleron J.L. Dagallier A. El-Ahmad Y. Guilloteau J.P. Guizani H. Bouchard H. Venot C. Discovery of the first non-ATP competitive IGF-1R kinase inhibitors: Advantages in comparison with competitive inhibitors. Bioorg. Med. Chem. Lett. 2011 21 8 2224 2228 10.1016/j.bmcl.2011.03.003 21441024
    [Google Scholar]
  27. Sergent D. Wang Q. Sasaki N.A. Ouazzani J. Synthesis of hydantoin analogues of (2S,3R,4S)-4-hydroxyisoleucine with insulinotropic properties. Bioorg. Med. Chem. Lett. 2008 18 15 4332 4335 10.1016/j.bmcl.2008.06.081 18621529
    [Google Scholar]
  28. Ghasempour L. Asghari S. Tajbakhsh M. Mohseni M. One‐pot synthesis of new hydantoin (thiohydantoin) derivatives and evaluation of their antibacterial and antioxidant activities. J. Heterocycl. Chem. 2020 57 12 4136 4148 10.1002/jhet.4120
    [Google Scholar]
  29. Marzouk A.A. Bass A.K.A. Ahmed M.S. Abdelhamid A.A. Elshaier Y.A.M.M. Salman A.M.M. Aly O.M. Design, synthesis and anticonvulsant activity of new imidazolidindione and imidazole derivatives. Bioorg. Chem. 2020 101 104020 10.1016/j.bioorg.2020.104020 32599366
    [Google Scholar]
  30. Zhu Q. Pan Y. Xu Z. Li R. Qiu G. Xu W. Ke X. Wu L. Hu X. Synthesis and potential anticonvulsant activity of new N-3-substituted 5,5-cyclopropanespirohydantoins. Eur. J. Med. Chem. 2009 44 1 296 302 10.1016/j.ejmech.2008.02.024 18396358
    [Google Scholar]
  31. Stilz H.U. Guba W. Jablonka B. Just M. Klingler O. König W. Wehner V. Zoller G. Discovery of an orally active non-peptide fibrinogen receptor antagonist based on the hydantoin scaffold. J. Med. Chem. 2001 44 8 1158 1176 10.1021/jm001068s 11312916
    [Google Scholar]
  32. Pękala E. Stadnicka K. Broda A. Zygmunt M. Filipek B. Kieć-Kononowicz K. Synthesis, structure–activity relationship of some new anti-arrhythmic 5-arylidene imidazolidine-2,4-dione derivatives. Eur. J. Med. Chem. 2005 40 3 259 269 10.1016/j.ejmech.2004.11.006 15725495
    [Google Scholar]
  33. Kieć-Kononowicz K. Stadnicka K. Mitka A. Pekala E. Filipek B. Sapa J. Zygmunt M. Synthesis, structure and antiarrhythmic properties evaluation of new basic derivatives of 5,5-diphenylhydantoin. Eur. J. Med. Chem. 2003 38 6 555 566 10.1016/S0223‑5234(03)00075‑8 12832127
    [Google Scholar]
  34. Nishinami S. Ikeda K. Nagao T. Koyama A.H. Arakawa T. Shiraki K. Aromatic interaction of hydantoin compounds leads to virucidal activities. Biophys. Chem. 2021 275 106621 10.1016/j.bpc.2021.106621 34004504
    [Google Scholar]
  35. Kim D. Wang L. Caldwell C.G. Chen P. Finke P.E. Oates B. MacCoss M. Mills S.G. Malkowitz L. Gould S.L. DeMartino J.A. Springer M.S. Hazuda D. Miller M. Kessler J. Danzeisen R. Carver G. Carella A. Holmes K. Lineberger J. Schleif W.A. Emini E.A. Design, synthesis, and SAR of heterocycle-containing antagonists of the human CCR5 receptor for the treatment of HIV-1 infection. Bioorg. Med. Chem. Lett. 2001 11 24 3103 3106 10.1016/S0960‑894X(01)00655‑2 11720852
    [Google Scholar]
  36. Nique F. Hebbe S. Triballeau N. Peixoto C. Lefrançois J.M. Jary H. Alvey L. Manioc M. Housseman C. Klaassen H. Van Beeck K. Guédin D. Namour F. Minet D. Van der Aar E. Feyen J. Fletcher S. Blanqué R. Robin-Jagerschmidt C. Deprez P. Identification of a 4-(hydroxymethyl)diarylhydantoin as a selective androgen receptor modulator. J. Med. Chem. 2012 55 19 8236 8247 10.1021/jm300281x 22957947
    [Google Scholar]
  37. Li J.J. Iula D.M. Nguyen M.N. Hu L.Y. Dettling D. Johnson T.R. Du D.Y. Shanmugasundaram V. Van Camp J.A. Wang Z. Harter W.G. Yue W.S. Boys M.L. Wade K.J. Drummond E.M. Samas B.M. Lefker B.A. Hoge G.S. Lovdahl M.J. Asbill J. Carroll M. Meade M.A. Ciotti S.M. Krieger-Burke T. Rational design and synthesis of 4-((1R,2R)-2-hydroxycyclohexyl)-2(trifluoromethyl)benzonitrile (PF-998425), a novel, nonsteroidal androgen receptor antagonist devoid of phototoxicity for dermatological indications. J. Med. Chem. 2008 51 21 7010 7014 10.1021/jm8009316 18921992
    [Google Scholar]
  38. He Y. Hwang D.J. Ponnusamy S. Thiyagarajan T. Mohler M.L. Narayanan R. Miller D.D. Exploration and biological evaluation of basic heteromonocyclic propenamide derivatives as sards for the treatment of enzalutamide-resistant prostate cancer. J. Med. Chem. 2021 64 15 11045 11062 10.1021/acs.jmedchem.1c00439 34269581
    [Google Scholar]
  39. He Y. Hwang D.J. Ponnusamy S. Thiyagarajan T. Mohler M.L. Narayanan R. Miller D.D. Pyrazol-1-yl-propanamides as SARD and pan-antagonists for the treatment of enzalutamide-resistant prostate cancer. J. Med. Chem. 2020 63 21 12642 12665 10.1021/acs.jmedchem.0c00943 33095584
    [Google Scholar]
  40. Zhang Z. Connolly P.J. Lim H.K. Pande V. Meerpoel L. Teleha C. Branch J.R. Ondrus J. Hickson I. Bush T. Luistro L. Packman K. Bischoff J.R. Ibrahim S. Parrett C. Chong Y. Gottardis M.M. Bignan G. Discovery of JNJ-63576253: A clinical stage androgen receptor antagonist for F877L mutant and wild-type castration-resistant prostate cancer (mCRPC). J. Med. Chem. 2021 64 2 909 924 10.1021/acs.jmedchem.0c01563 33470111
    [Google Scholar]
  41. Flick A.C. Leverett C.A. Ding H.X. McInturff E. Fink S.J. Helal C.J. DeForest J.C. Morse P.D. Mahapatra S. O’Donnell C.J. Synthetic approaches to new drugs approved during 2018. J. Med. Chem. 2020 63 19 10652 10704 10.1021/acs.jmedchem.0c00345 32338902
    [Google Scholar]
  42. Wu X. Feng W. Yang M. Liu X. Gao M. Li X. Gan L. He T. HC-1119, a deuterated Enzalutamide, inhibits migration, invasion and metastasis of the AR-positive triple-negative breast Cancer cells. Mol. Biol. Rep. 2022 49 10 9231 9240 10.1007/s11033‑022‑07749‑8 35960413
    [Google Scholar]
  43. Li X. Cheng K. Li X. Zhou Y. Liu J. Zeng H. Chen Y. Liu X. Zhang Y. Wang Y. Bi F. Zheng L. Phase I clinical trial of HC ‐1119: A deuterated form of enzalutamide. Int. J. Cancer 2021 149 7 1473 1482 10.1002/ijc.33706 34109624
    [Google Scholar]
  44. Konnert L. Lamaty F. Martinez J. Colacino E. Recent advances in the synthesis of Hydantoins: The state of the art of a valuable scaffold. Chem. Rev. 2017 117 23 13757 13809 10.1021/acs.chemrev.7b00067 28644621
    [Google Scholar]
  45. Blackadar C.B. Historical review of the causes of cancer. World J. Clin. Oncol. 2016 7 1 54 86 10.5306/wjco.v7.i1.54 26862491
    [Google Scholar]
  46. Sudani B.R. The multifaceted biological activities of Hydantoin derivatives: From antimicrobial to anticancer agents. Bioscan 2024 19 88 92 10.63001/tbs.2024.v19.i02.S2.pp
    [Google Scholar]
  47. Sunil D. Kamath P. Multi-target directed indole based hybrid molecules in cancer therapy: An up-to-date evidence-based review. Curr. Top. Med. Chem. 2017 17 9 959 985 10.2174/1568026616666160927150839 27697057
    [Google Scholar]
  48. Pettit G.R. Herald C.L. Leet J.E. Gupta R. Schaufelberger D.E. Bates R.B. Clewlow P.J. Doubek D.L. Manfredi K.P. Rützler K. Schmidt J.M. Tackett L.P. Ward F.B. Bruck M. Camou F. Antineoplastic agents. 168. Isolation and structure of axinohydantoin. Can. J. Chem. 1990 68 9 1621 1624 10.1139/v90‑250
    [Google Scholar]
  49. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 1984 308 5961 693 698 10.1038/308693a0 6232463
    [Google Scholar]
  50. Patil A.D. Freyer A.J. Killmer L. Hofmann G. Johnson R.K. Z -Axinohydantoin and Debromo- Z -Axinohydantoin from the sponge Stylotella aurantium: Inhibitors of protein kinase C. Nat. Prod. Lett. 1997 9 3 201 207 10.1080/10575639708048315
    [Google Scholar]
  51. Castillo A. Justice M.J. The kinesin related motor protein, Eg5, is essential for maintenance of pre-implantation embryogenesis. Biochem. Biophys. Res. Commun. 2007 357 3 694 699 10.1016/j.bbrc.2007.04.021 17449012
    [Google Scholar]
  52. Waitzman J.S. Rice S.E. Mechanism and regulation of kinesin‐5, an essential motor for the mitotic spindle. Biol. Cell 2014 106 1 1 12 10.1111/boc.201300054 24125467
    [Google Scholar]
  53. Hotha S. Yarrow J.C. Yang J.G. Garrett S. Renduchintala K.V. Mayer T.U. Kapoor T.M. HR22C16: A potent small-molecule probe for the dynamics of cell division. Angew. Chem. Int. Ed. 2003 42 21 2379 2382 10.1002/anie.200351173 12783501
    [Google Scholar]
  54. Barnes D.W. Growth characteristics of A431 human epidermoid carcinoma cells in serum-free medium: Inhibition by epidermal growth factor. Adv. Exp. Med. Biol. 1984 172 49 66 10.1007/978‑1‑4615‑9376‑8_4 6610292
    [Google Scholar]
  55. Wykosky J. Fenton T. Furnari F. Cavenee W.K. Therapeutic targeting of epidermal growth factor receptor in human cancer: Successes and limitations. Chin. J. Cancer 2011 30 1 5 12 10.5732/cjc.010.10542 21192840
    [Google Scholar]
  56. Carmi C. Cavazzoni A. Zuliani V. Lodola A. Bordi F. Plazzi P.V. Alfieri R.R. Petronini P.G. Mor M. 5-benzylidene-hydantoins as new EGFR inhibitors with antiproliferative activity. Bioorg. Med. Chem. Lett. 2006 16 15 4021 4025 10.1016/j.bmcl.2006.05.010
    [Google Scholar]
  57. Cavazzoni A. Alfieri R.R. Carmi C. Zuliani V. Galetti M. Fumarola C. Frazzi R. Bonelli M. Bordi F. Lodola A. Mor M. Petronini P.G. Dual mechanisms of action of the 5-benzylidene-hydantoin UPR1024 on lung cancer cell lines. Mol. Cancer Ther. 2008 7 2 361 370 10.1158/1535‑7163.MCT‑07‑0477 18281519
    [Google Scholar]
  58. El-Deeb I.M. Bayoumi S.M. El-Sherbeny M.A. Abdel-Aziz A.A.M. Synthesis and antitumor evaluation of novel cyclic arylsulfonylureas: ADME-T and pharmacophore prediction. Eur. J. Med. Chem. 2010 45 6 2516 2530 10.1016/j.ejmech.2010.02.038 20236733
    [Google Scholar]
  59. Zhao E. Hou J. Ke X. Abbas M.N. Kausar S. Zhang L. Cui H. The roles of sirtuin family proteins in cancer progression. Cancers (Basel) 2019 11 12 1949 10.3390/cancers11121949 31817470
    [Google Scholar]
  60. Sacconnay L. Ryckewaert L. Randazzo G.M. Petit C. Passos C.D.S. Jachno J. Michailovienė V. Zubrienė A. Matulis D. Carrupt P.A. Simões-Pires C.A. Nurisso A. 5-Benzylidene-hydantoin is a new scaffold for SIRT inhibition: From virtual screening to activity assays. Eur. J. Pharm. Sci. 2016 85 59 67 10.1016/j.ejps.2016.01.010 26791955
    [Google Scholar]
  61. Pustenko A. Nocentini A. Gratteri P. Bonardi A. Vozny I. Žalubovskis R. Supuran C.T. The antibiotic furagin and its derivatives are isoform-selective human carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem. 2020 35 1 1011 1020 10.1080/14756366.2020.1752201 32297543
    [Google Scholar]
  62. Lannuzel M. Lamothe M. Schambel P. Etiévant C. Hill B. Perez M. From pure FPP to mixed FPP and CAAX competitive inhibitors of farnesyl protein transferase. Bioorg. Med. Chem. Lett. 2003 13 8 1459 1462 10.1016/S0960‑894X(03)00171‑9 12668012
    [Google Scholar]
  63. Rajabi M. Mansell D. Freeman S. Bryce R.A. Structure–activity relationship of 2,4,5-trioxoimidazolidines as inhibitors of thymidine phosphorylase. Eur. J. Med. Chem. 2011 46 4 1165 1171 10.1016/j.ejmech.2011.01.035 21324566
    [Google Scholar]
  64. Liang X. Fu H. Xiao P. Fang H. Hou X. Design, synthesis and biological evaluation of imidazolidine-2,4-dione and 2-thioxothiazolidin-4-one derivatives as lymphoid-specific tyrosine phosphatase inhibitors. Bioorg. Chem. 2020 103 104124 10.1016/j.bioorg.2020.104124 32768742
    [Google Scholar]
  65. Rajic Z. Zorc B. Raic-Malic S. Ester K. Kralj M. Pavelic K. Balzarini J. De Clercq E. Mintas M. Hydantoin derivatives of L- and D-amino acids: synthesis and evaluation of their antiviral and antitumoral activity. Molecules 2006 11 11 837 848 10.3390/11110837 18007390
    [Google Scholar]
  66. Graves B. Thompson T. Xia M. Janson C. Lukacs C. Deo D. Di Lello P. Fry D. Garvie C. Huang K.S. Gao L. Tovar C. Lovey A. Wanner J. Vassilev L.T. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl. Acad. Sci. USA 2012 109 29 11788 11793 10.1073/pnas.1203789109 22745160
    [Google Scholar]
  67. Wang G. Wang Y. Wang L. Han L. Hou X. Fu H. Fang H. Design, synthesis and preliminary bioactivity studies of imidazolidine-2,4-dione derivatives as Bcl-2 inhibitors. Bioorg. Med. Chem. 2015 23 23 7359 7365 10.1016/j.bmc.2015.10.023 26558516
    [Google Scholar]
  68. Liu J. Zhang K. Mai X. Wei J. Liao Y. Zhong Y. Liu Y. Feng L. Liu C. Synthesis, anticancer evaluation and docking study of 3-benzyloxyhydantoin derivatives. Med. Chem. 2016 12 1 37 47 10.2174/1573406411666150708111631 26152144
    [Google Scholar]
  69. Zhong B. Vatolin S. Idippily N.D. Lama R. Alhadad L.A. Reu F.J. Su B. Structural optimization of non-nucleoside DNA methyltransferase inhibitor as anti-cancer agent. Bioorg. Med. Chem. Lett. 2016 26 4 1272 1275 10.1016/j.bmcl.2016.01.020 26774653
    [Google Scholar]
  70. Lasko L.M. Jakob C.G. Edalji R.P. Qiu W. Montgomery D. Digiammarino E.L. Hansen T.M. Risi R.M. Frey R. Manaves V. Shaw B. Algire M. Hessler P. Lam L.T. Uziel T. Faivre E. Ferguson D. Buchanan F.G. Martin R.L. Torrent M. Chiang G.G. Karukurichi K. Langston J.W. Weinert B.T. Choudhary C. de Vries P. Kluge A.F. Patane M.A. Van Drie J.H. Wang C. McElligott D. Kesicki E. Marmorstein R. Sun C. Cole P.A. Rosenberg S.H. Michaelides M.R. Lai A. Bromberg K.D. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 2017 550 7674 128 132 10.1038/nature24028 28953875
    [Google Scholar]
  71. Harras M.F. Sabour R. Design, synthesis and biological evaluation of novel 1,3,4-trisubstituted pyrazole derivatives as potential chemotherapeutic agents for hepatocellular carcinoma. Bioorg. Chem. 2018 78 149 157 10.1016/j.bioorg.2018.03.014 29567429
    [Google Scholar]
  72. Obradović A. Matić M. Ognjanović B. Đurđević P. Marinković E. Ušćumlić G. Božić B. Božić Nedeljković B. Antiproliferative and antimigratory effects of 3-(4-substituted benzyl)-5- isopropyl-5-phenylhydantoin derivatives in human breast cancer cells. Saudi Pharm. J. 2020 28 3 246 254 10.1016/j.jsps.2020.01.003 32194325
    [Google Scholar]
  73. Roth H.S. Hergenrother P.J. Derivatives of procaspase-activating compound 1 (PAC-1) and their anticancer activities. Curr. Med. Chem. 2016 23 3 201 241 10.2174/0929867323666151127201829 26630918
    [Google Scholar]
  74. Furutachi M. Ota K. Fujisaki F. Ikeda R. Yoshikawa N. Yokota T. Takeda Y. Yokomizo K. Zhou J.R. Kashige N. Miake F. Sumoto K. Anti-proliferative activities of some bivalent symmetrical 5-substituted hydantoin derivatives towards human brain glioma U251 cells (U251) and human carcinoma cells (KB3-1). Biol. Pharm. Bull. 2019 42 11 1953 1956 10.1248/bpb.b19‑00486 31685778
    [Google Scholar]
  75. McNally V.A. Gbaj A. Douglas K.T. Stratford I.J. Jaffar M. Freeman S. Bryce R.A. Identification of a novel class of inhibitor of human and Escherichia coli thymidine phosphorylase by in silico screening. Bioorg. Med. Chem. Lett. 2003 13 21 3705 3709 10.1016/j.bmcl.2003.08.010 14552762
    [Google Scholar]
  76. Trisovic N. Bozic B. Obradovic A. Stefanovic O. Markovic S. Comic L. Bozic B. Uscumlic G. Structure-activity relationships of 3-substituted-5,5- diphenylhydantoins as potential antiproliferative and antimicrobial agents. J. Serb. Chem. Soc. 2011 76 12 1597 1606 10.2298/JSC110314143T
    [Google Scholar]
  77. Alanazi A.M. El-Azab A.S. Al-Swaidan I.A. Maarouf A.R. El-Bendary E.R. Abu El-Enin M.A. Abdel-Aziz A.A.M. Synthesis, single-crystal, in vitro antitumor evaluation and molecular docking of 3-substitued 5,5-diphenylimidazolidine-2,4-dione derivatives. Med. Chem. Res. 2013 22 12 6129 6142 10.1007/s00044‑013‑0597‑1
    [Google Scholar]
  78. Hmuda S. Trišović N. Rogan J. Poleti D. Vitnik Ž. Vitnik V. Valentić N. Božić B. Ušćumlić G. New derivatives of hydantoin as potential antiproliferative agents: Biological and structural characterization in combination with quantum chemical calculations. Monatsh. Chem. 2014 145 5 821 833 10.1007/s00706‑013‑1149‑6
    [Google Scholar]
  79. Żesławska E. Kincses A. Spengler G. Nitek W. Wyrzuc K. Kieć-Kononowicz K. Handzlik J. The 5-aromatic hydantoin-3-acetate derivatives as inhibitors of the tumour multidrug resistance efflux pump P-glycoprotein (ABCB1): Synthesis, crystallographic and biological studies. Bioorg. Med. Chem. 2016 24 12 2815 2822 10.1016/j.bmc.2016.04.055 27160056
    [Google Scholar]
  80. Alkahtani H.M. Alanazi M.M. Aleanizy F.S. Alqahtani F.Y. Alhoshani A. Alanazi F.E. Almehizia A.A. Abdalla A.N. Alanazi M.G. El-Azab A.S. Abdel-Aziz A.A.M. Synthesis, anticancer, apoptosis-inducing activities and EGFR and VEGFR2 assay mechanistic studies of 5,5-diphenylimidazolidine-2,4-dione derivatives: Molecular docking studies. Saudi Pharm. J. 2019 27 5 682 693 10.1016/j.jsps.2019.04.003 31297023
    [Google Scholar]
  81. Hassanin M.A. Mustafa M. Abourehab M.A.S. Hassan H.A. Aly O.M. Beshr E.A.M. Design and synthesis of new hydantoin acetanilide derivatives as anti-NSCLC targeting EGFRL858R/T790M mutations. Pharmaceuticals 2022 15 7 857 10.3390/ph15070857 35890154
    [Google Scholar]
  82. Lee J. Kim J. Koh J.S. Chung H.H. Kim K.H. Hydantoin derivatives as non-peptidic inhibitors of Ras farnesyl transferase. Bioorg. Med. Chem. Lett. 2006 16 7 1954 1956 10.1016/j.bmcl.2005.12.074 16442288
    [Google Scholar]
  83. Ashraf H. A.; Dalal A, A-E.; Nermin S, A.; Bernard D, G.; Jose T, T.; Heather N, T.; Adam B, K.; Gary A, P. Synthesis of novel tadalafil analogues and their evaluation as phosphodiesterase inhibitors and anticancer agents. Arzneimittelforschung 2011 59 8 415 421 10.1055/s‑0031‑1296417 19813465
    [Google Scholar]
  84. Abadi A.H. Gary B.D. Tinsley H.N. Piazza G.A. Abdel-Halim M. Synthesis, molecular modeling and biological evaluation of novel tadalafil analogues as phosphodiesterase 5 and colon tumor cell growth inhibitors, new stereochemical perspective. Eur. J. Med. Chem. 2010 45 4 1278 1286 10.1016/j.ejmech.2009.10.046 20206015
    [Google Scholar]
  85. Mohamed H.A. Girgis N.M.R. Wilcken R. Bauer M.R. Tinsley H.N. Gary B.D. Piazza G.A. Boeckler F.M. Abadi A.H. Synthesis and molecular modeling of novel tetrahydro-β-carboline derivatives with phosphodiesterase 5 inhibitory and anticancer properties. J. Med. Chem. 2011 54 2 495 509 10.1021/jm100842v 21189023
    [Google Scholar]
  86. Abadi A.H. Lehmann J. Piazza G.A. Abdel-Halim M. Ali M.S.M. Synthesis, molecular modeling, and biological evaluation of novel tetrahydro-β-carboline hydantoin and tetrahydro-β-carboline thiohydantoin derivatives as phosphodiesterase 5 inhibitors. Int. J. Med. Chem. 2011 2011 1 9 10.1155/2011/562421 27471602
    [Google Scholar]
  87. Ahmed N.S. Ali A.H. El-Nashar S.M. Gary B.D. Fajardo A.M. Tinsley H.N. Piazza G.A. Negri M. Abadi A.H. Exploring the PDE5 H-pocket by ensemble docking and structure-based design and synthesis of novel β-carboline derivatives. Eur. J. Med. Chem. 2012 57 329 343 10.1016/j.ejmech.2012.09.029 23117589
    [Google Scholar]
  88. Shankaraiah N. Nekkanti S. Chudasama K.J. Senwar K.R. Sharma P. Jeengar M.K. Naidu V.G.M. Srinivasulu V. Srinivasulu G. Kamal A. Design, synthesis and anticancer evaluation of tetrahydro-β-carboline-hydantoin hybrids. Bioorg. Med. Chem. Lett. 2014 24 23 5413 5417 10.1016/j.bmcl.2014.10.038 25453799
    [Google Scholar]
  89. Zheng H. Wu Y. Sun B. Cheng C. Qiao Y. Jiang Y. Zhao S. Xie Z. Tan J. Lou H. Discovery of furyl/thienyl β-carboline derivatives as potent and selective PDE5 inhibitors with excellent vasorelaxant effect. Eur. J. Med. Chem. 2018 158 767 780 10.1016/j.ejmech.2018.09.028 30245400
    [Google Scholar]
  90. Yao C.H. Hsieh T.C. Song J.S. Lee J.C. Design, synthesis and anticancer evaluation of β-carboline-1-one hydantoins. Future Med. Chem. 2020 12 3 183 192 10.4155/fmc‑2019‑0276 31813284
    [Google Scholar]
  91. Basappa; Ananda Kumar, C.S.; Nanjunda Swamy, S.; Sugahara, K.; Rangappa, K.S. Anti-tumor and anti-angiogenic activity of novel hydantoin derivatives: Inhibition of VEGF secretion in liver metastatic osteosarcoma cells. Bioorg. Med. Chem. 2009 17 14 4928 4934 10.1016/j.bmc.2009.06.004 19556138
    [Google Scholar]
  92. Ananda Kumar C.S. Prasad S.B.B. Vinaya K. Chandrappa S. Thimmegowda N.R. Ranganatha S.R. Swarup S. Rangappa K.S. Synthesis and antiproliferative activity of substituted diazaspiro hydantoins: A structure-activity relationship study. Invest. New Drugs 2009 27 2 131 139 10.1007/s10637‑008‑9150‑3 18607541
    [Google Scholar]
  93. Kavitha C.V. Nambiar M. Narayanaswamy P.B. Thomas E. Rathore U. Ananda Kumar C.S. Choudhary B. Rangappa K.S. Raghavan S.C. Propyl-2-(8-(3,4-difluorobenzyl)-2′,5′-dioxo-8-azaspiro[bicyclo[3.2.1] octane-3,4′-imidazolidine]-1′-yl) acetate induces apoptosis in human leukemia cells through mitochondrial pathway following cell cycle arrest. PLoS One 2013 8 7 e69103 10.1371/journal.pone.0069103 23922684
    [Google Scholar]
  94. Michaelides M.R. Kluge A. Patane M. Van Drie J.H. Wang C. Hansen T.M. Risi R.M. Mantei R. Hertel C. Karukurichi K. Nesterov A. McElligott D. de Vries P. Langston J.W. Cole P.A. Marmorstein R. Liu H. Lasko L. Bromberg K.D. Lai A. Kesicki E.A. Discovery of spiro oxazolidinediones as selective, orally bioavailable inhibitors of p300/cbp histone acetyltransferases. ACS Med. Chem. Lett. 2018 9 1 28 33 10.1021/acsmedchemlett.7b00395 29348807
    [Google Scholar]
  95. Upadhyay N. Tilekar K. Loiodice F. Anisimova N.Y. Spirina T.S. Sokolova D.V. Smirnova G.B. Choe J. Meyer-Almes F.J. Pokrovsky V.S. Lavecchia A. Ramaa C.S. Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg. Chem. 2021 107 104527 10.1016/j.bioorg.2020.104527 33317839
    [Google Scholar]
  96. Żesławska E. Kucwaj-Brysz K. Kincses A. Spengler G. Szymańska E. Czopek A. Marć M.A. Kaczor A. Nitek W. Domínguez-Álvarez E. Latacz G. Kieć-Kononowicz K. Handzlik J. An insight into the structure of 5-spiro aromatic derivatives of imidazolidine-2,4-dione, a new group of very potent inhibitors of tumor multidrug resistance in T-lymphoma cells. Bioorg. Chem. 2021 109 104735 10.1016/j.bioorg.2021.104735 33640632
    [Google Scholar]
  97. Zagórska A. Czopek A. Jaromin A. Mielczarek-Puta M. Struga M. Stary D. Bajda M. Design, synthesis, and in vitro antiproliferative activity of hydantoin and purine derivatives with the 4-acetylphenylpiperazinylalkyl moiety. Materials (Basel) 2021 14 15 4156 10.3390/ma14154156 34361351
    [Google Scholar]
  98. Peng G.W. Marquez V.E. Driscoll J.S. Potential central nervous system antitumor agents. Hydantoin derivatives. J. Med. Chem. 1975 18 8 846 849 10.1021/jm00242a019 1159704
    [Google Scholar]
  99. Bakalova A. Varbanov H. Buyukliev R. Momekov G. Ferdinandov D. Konstantinov S. Ivanov D. Synthesis, characterization and biological activity of Pt(II) and Pt(IV) complexes with 5-methyl-5(4-pyridyl)-2,4-imidazolidenedione. Eur. J. Med. Chem. 2008 43 5 958 965 10.1016/j.ejmech.2007.06.025 17707952
    [Google Scholar]
  100. Bakalova A. Buyukliev R. Varbanov H. Momekov G. Design, synthesis and comparative cytotoxic investigation of platinum(II) complexes with some derivatives of 5-methyl-5-(4-pyridyl)hydantoin. Inorg. Chim. Acta 2014 423 46 51 10.1016/j.ica.2014.07.030
    [Google Scholar]
  101. Leban J. Blisse M. Krauss B. Rath S. Baumgartner R. Seifert M.H.J. Proteasome inhibition by peptide-semicarbazones. Bioorg. Med. Chem. 2008 16 8 4579 4588 10.1016/j.bmc.2008.02.042 18313310
    [Google Scholar]
  102. Khanfar M.A. Asal B.A. Mudit M. Kaddoumi A. El Sayed K.A. The marine natural-derived inhibitors of glycogen synthase kinase-3β phenylmethylene hydantoins: In vitro and in vivo activities and pharmacophore modeling. Bioorg. Med. Chem. 2009 17 16 6032 6039 10.1016/j.bmc.2009.06.054 19616957
    [Google Scholar]
  103. Khanfar M.A. El Sayed K.A. Phenylmethylene hydantoins as prostate cancer invasion and migration inhibitors. CoMFA approach and QSAR analysis. Eur. J. Med. Chem. 2010 45 11 5397 5405 10.1016/j.ejmech.2010.08.066 20869139
    [Google Scholar]
  104. Xia Z. Knaak C. Ma J. Beharry Z.M. McInnes C. Wang W. Kraft A.S. Smith C.D. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J. Med. Chem. 2009 52 1 74 86 10.1021/jm800937p 19072652
    [Google Scholar]
  105. Reddy Y.T. Sekhar K.R. Sasi N. Reddy P.N. Freeman M.L. Crooks P.A. Novel substituted (Z)-5-((N-benzyl-1H-indol-3-yl)methylene)imidazolidine-2,4-diones and 5-((N-benzyl-1H-indol-3-yl)methylene)pyrimidine-2,4,6(1H,3H,5H)-triones as potent radio-sensitizing agents. Bioorg. Med. Chem. Lett. 2010 20 2 600 602 10.1016/j.bmcl.2009.11.082 20005706
    [Google Scholar]
  106. Thirupathi Reddy Y. Narsimha Reddy P. Koduru S. Damodaran C. Crooks P.A. Aplysinopsin analogs: Synthesis and anti-proliferative activity of substituted (Z)-5-(N-benzylindol-3-ylmethylene)imidazolidine-2,4-diones. Bioorg. Med. Chem. 2010 18 10 3570 3574 10.1016/j.bmc.2010.03.054 20403701
    [Google Scholar]
  107. Malancona S. Altamura S. Filocamo G. Kinzel O. Hernando J.I.M. Rowley M. Scarpelli R. Steinkühler C. Jones P. Identification of MK-5710 ((8aS)-8a-methyl-1,3-dioxo-2-[(1S,2R)-2-phenylcyclopropyl]-N-(1-phenyl-1H-pyrazol-5-yl)hexahydroimid azo[1,5-a]pyrazine-7(1H)-carboxamide), a potent smoothened antagonist for use in Hedgehog pathway dependent malignancies, Part 1. Bioorg. Med. Chem. Lett. 2011 21 15 4422 4428 10.1016/j.bmcl.2011.06.024 21737272
    [Google Scholar]
  108. Kinzel O. Alfieri A. Altamura S. Brunetti M. Bufali S. Colaceci F. Ferrigno F. Filocamo G. Fonsi M. Gallinari P. Malancona S. Hernando J.I.M. Monteagudo E. Orsale M.V. Palumbi M.C. Pucci V. Rowley M. Sasso R. Scarpelli R. Steinkühler C. Jones P. Identification of MK-5710 ((8aS)-8a-methyl-1,3-dioxo-2-[(1S,2R)-2-phenylcyclo- propyl]-N-(1-phenyl-1H-pyrazol-5-yl)hexahydro-imidazo[1,5-a]pyrazine-7(1H)-carboxamide), a potent smoothened antagonist for use in Hedgehog pathway dependent malignancies, Part 2. Bioorg. Med. Chem. Lett. 2011 21 15 4429 4435 10.1016/j.bmcl.2011.06.023 21737263
    [Google Scholar]
  109. Azizmohammadi M. Khoobi M. Ramazani A. Emami S. Zarrin A. Firuzi O. Miri R. Shafiee A. 2H-chromene derivatives bearing thiazolidine-2,4-dione, rhodanine or hydantoin moieties as potential anticancer agents. Eur. J. Med. Chem. 2013 59 15 22 10.1016/j.ejmech.2012.10.044 23202485
    [Google Scholar]
  110. Yamaguchi M. Miyazaki M. Kodrasov M.P. Rotinsulu H. Losung F. Mangindaan R.E.P. de Voogd N.J. Yokosawa H. Nicholson B. Tsukamoto S. Spongiacidin C, a pyrrole alkaloid from the marine sponge Stylissa massa, functions as a USP7 inhibitor. Bioorg. Med. Chem. Lett. 2013 23 13 3884 3886 10.1016/j.bmcl.2013.04.066 23684893
    [Google Scholar]
  111. Youssef D. Shaala L. Alshali K. Bioactive hydantoin alkaloids from the red sea marine sponge Hemimycale arabica. Mar. Drugs 2015 13 11 6609 6619 10.3390/md13116609 26516870
    [Google Scholar]
  112. Vitale R.M. Thellung S. Tinto F. Solari A. Gatti M. Nuzzo G. Ioannou E. Roussis V. Ciavatta M.L. Manzo E. Florio T. Amodeo P. Identification of the hydantoin alkaloids parazoanthines as novel CXCR4 antagonists by computational and in vitro functional characterization. Bioorg. Chem. 2020 105 104337 10.1016/j.bioorg.2020.104337 33113408
    [Google Scholar]
  113. Donnier-Maréchal M. Larchanché P.E. Le Broc D. Furman C. Carato P. Melnyk P. Carboline- and phenothiazine-derivated heterocycles as potent SIGMA-1 protein ligands. Eur. J. Med. Chem. 2015 89 198 206 10.1016/j.ejmech.2014.10.053 25462240
    [Google Scholar]
  114. Ali W. Spengler G. Kincses A. Nové M. Battistelli C. Latacz G. Starek M. Dąbrowska M. Honkisz-Orzechowska E. Romanelli A. Rasile M.M. Szymańska E. Jacob C. Zwergel C. Handzlik J. Discovery of phenylselenoether-hydantoin hybrids as ABCB1 efflux pump modulating agents with cytotoxic and antiproliferative actions in resistant T-lymphoma. Eur. J. Med. Chem. 2020 200 112435 10.1016/j.ejmech.2020.112435 32505850
    [Google Scholar]
  115. Dong J. Pan X. Yang Y. Zhang G. Xiao Z. Liu Z. Design, synthesis and biological evaluation of exiguamine A analogues as IDO1 inhibitors. Eur. J. Med. Chem. 2021 223 113631 10.1016/j.ejmech.2021.113631 34147748
    [Google Scholar]
  116. Zask A. Birnberg G. Cheung K. Kaplan J. Niu C. Norton E. Yamashita A. Beyer C. Krishnamurthy G. Greenberger L.M. Loganzo F. Ayral-Kaloustian S. D-piece modifications of the hemiasterlin analog HTI-286 produce potent tubulin inhibitors. Bioorg. Med. Chem. Lett. 2004 14 16 4353 4358 10.1016/j.bmcl.2004.05.005 15261301
    [Google Scholar]
  117. Abdellatif K.R.A. Fadaly W.A.A. Mostafa Y.A. Zaher D.M. Omar H.A. Thiohydantoin derivatives incorporating a pyrazole core: Design, synthesis and biological evaluation as dual inhibitors of topoisomerase-I and cycloxygenase-2 with anti-cancer and anti-inflammatory activities. Bioorg. Chem. 2019 91 103132 10.1016/j.bioorg.2019.103132 31374529
    [Google Scholar]
  118. Abu Ali O.A. Abd El-Fattah W. Alfaifi M.Y. Shati A.A. Elbehairi S.E.I. Abu Almaaty A.H. Elshaarawy R.F.M. Fayad E. New Mn(III)/Fe(III) complexes with thiohydantoin-supported imidazolium ionic liquids for breast cancer therapy. Inorg. Chim. Acta 2023 551 121460 10.1016/j.ica.2023.121460
    [Google Scholar]
  119. Chang X. Zhang D. Qu F. Xie Y. Chen T. Zhang Y. Du Q. Bian J. Li Z. Wang J. Xu X. Discovery of thiohydantoin based antagonists of androgen receptor with efficient degradation for the treatment of prostate cancer. Eur. J. Med. Chem. 2023 257 115490 10.1016/j.ejmech.2023.115490 37209451
    [Google Scholar]
  120. Al-Shawi A.A.A. El-Arabey A.A. Mutlaq D.Z. Eltayb W.A. Iriti M. Abdalla M. Study on molecular anti-tumor mechanism of 2-Thiohydantoin derivative based on molecular docking and bioinformatic analyses. Curr. Top. Med. Chem. 2023 23 6 440 452 10.2174/1568026623666230106121527 36617706
    [Google Scholar]
  121. Blanc M. Cussac M. Boucherle A. Leclerc G. Synthesis and immunomodulating activity of 1-amino-2-thiohydantoin derivatives. Eur. J. Med. Chem. 1992 27 8 839 843 10.1016/0223‑5234(92)90119‑L
    [Google Scholar]
  122. El-Sharief A.M.S. Al-Amri A.M. Al-Raqa S.Y. Halogenated, alkylated and new types of imidazolidine, pyrrolidine, imidazotriazine and thienoimidazole derivatives with biological and antitumor activities. J. Sulfur Chem. 2006 27 3 245 263 10.1080/17415990600631316
    [Google Scholar]
  123. Tran C. Ouk S. Clegg N.J. Chen Y. Watson P.A. Arora V. Wongvipat J. Smith-Jones P.M. Yoo D. Kwon A. Wasielewska T. Welsbie D. Chen C.D. Higano C.S. Beer T.M. Hung D.T. Scher H.I. Jung M.E. Sawyers C.L. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009 324 5928 787 790 10.1126/science.1168175 19359544
    [Google Scholar]
  124. Nagarajan S. Skoufias D.A. Kozielski F. Pae A.N. Receptor-ligand interaction-based virtual screening for novel Eg5/kinesin spindle protein inhibitors. J. Med. Chem. 2012 55 6 2561 2573 10.1021/jm201290v 22309208
    [Google Scholar]
  125. Majumdar P. Bathula C. Basu S.M. Das S.K. Agarwal R. Hati S. Singh A. Sen S. Das B.B. Design, synthesis and evaluation of thiohydantoin derivatives as potent topoisomerase I (Top1) inhibitors with anticancer activity. Eur. J. Med. Chem. 2015 102 540 551 10.1016/j.ejmech.2015.08.032 26312433
    [Google Scholar]
  126. Wu F. Jiang H. Zheng B. Kogiso M. Yao Y. Zhou C. Li X.N. Song Y. Inhibition of cancer-associated mutant isocitrate dehydrogenases by 2-thiohydantoin compounds. J. Med. Chem. 2015 58 17 6899 6908 10.1021/acs.jmedchem.5b00684 26280302
    [Google Scholar]
  127. Mariano M. Hartmann R.W. Engel M. Systematic diversification of benzylidene heterocycles yields novel inhibitor scaffolds selective for Dyrk1A, Clk1 and CK2. Eur. J. Med. Chem. 2016 112 209 216 10.1016/j.ejmech.2016.02.017 26896709
    [Google Scholar]
  128. Elhady H.A. El-Sayed R. Al-nathali H.S. Design, synthesis and evaluation of anticancer activity of novel 2-thioxoimidazolidin-4-one derivatives bearing pyrazole, triazole and benzoxazole moieties. Chem. Cent. J. 2018 12 1 51 10.1186/s13065‑018‑0418‑1 29740713
    [Google Scholar]
  129. Arif I.A. Ahamed A. Kumar R.S. Idhayadhulla A. Manilal A. Cytotoxic, larvicidal, nematicidal, and antifeedant activities of piperidin-connected 2-thioxoimidazolidin-4-one derivatives. Saudi J. Biol. Sci. 2019 26 4 673 680 10.1016/j.sjbs.2017.12.007 31048991
    [Google Scholar]
  130. Elbadawi M.M. Khodair A.I. Awad M.K. Kassab S.E. Elsaady M.T. Abdellatif K.R.A. Design, synthesis and biological evaluation of novel thiohydantoin derivatives as antiproliferative agents: A combined experimental and theoretical assessments. J. Mol. Struct. 2022 1249 131574 10.1016/j.molstruc.2021.131574
    [Google Scholar]
  131. Barrett R.R.G. Nash C. Diennet M. Cotnoir-White D. Doyle C. Mader S. Thomson A.A. Gleason J.L. Dual-function antiandrogen/HDACi hybrids based on enzalutamide and entinostat. Bioorg. Med. Chem. Lett. 2022 55 128441 10.1016/j.bmcl.2021.128441 34767912
    [Google Scholar]
  132. Nicolescu R.C.B. Maylin Z.R. Pérez-Areales F.J. Iegre J. Pandha H.S. Asim M. Spring D.R. Hybrid androgen receptor inhibitors Outperform Enzalutamide and EPI‐001 in in vitro models of prostate cancer drug resistance. ChemMedChem 2023 18 2 e202200548 10.1002/cmdc.202200548 36300876
    [Google Scholar]
  133. Kim H.R. Lee H.J. Choi Y.J. Park Y.J. Woo Y. Kim S.J. Park M.H. Lee H.W. Chun P. Chung H.Y. Moon H.R. Benzylidene-linked thiohydantoin derivatives as inhibitors of tyrosinase and melanogenesis: Importance of the β-phenyl-α,β-unsaturated carbonyl functionality. MedChemComm 2014 5 9 1410 1417 10.1039/C4MD00171K
    [Google Scholar]
  134. Evdokimov N.M. Magedov I.V. McBrayer D. Kornienko A. Isatin derivatives with activity against apoptosis-resistant cancer cells. Bioorg. Med. Chem. Lett. 2016 26 6 1558 1560 10.1016/j.bmcl.2016.02.015 26883150
    [Google Scholar]
  135. Xu X. Ge R. Li L. Wang J. Lu X. Xue S. Chen X. Li Z. Bian J. Exploring the tetrahydroisoquinoline thiohydantoin scaffold blockade the androgen receptor as potent anti-prostate cancer agents. Eur. J. Med. Chem. 2018 143 1325 1344 10.1016/j.ejmech.2017.10.031 29117897
    [Google Scholar]
  136. Channar P.A. Bano S. Hassan S. Perveen F. Saeed A. Mahesar P.A. Khan I.A. Iqbal J. Appraisal of novel azomethine–thioxoimidazolidinone conjugates as ecto-5′-nucleotidase inhibitors: Synthesis and molecular docking studies. RSC Advances 2022 12 27 17596 17606 10.1039/D2RA02675A 35765454
    [Google Scholar]
  137. Álvarez-Pérez M. Ali W. Marć M. Handzlik J. Domínguez-Álvarez E. Selenides and Diselenides: A review of their anticancer and chemopreventive activity. Molecules 2018 23 3 628 10.3390/molecules23030628 29534447
    [Google Scholar]
  138. Radomska D. Czarnomysy R. Radomski D. Bielawski K. Selenium compounds as novel potential anticancer agents. Int. J. Mol. Sci. 2021 22 3 1009 10.3390/ijms22031009 33498364
    [Google Scholar]
  139. Koketsu M. Takahashi A. Ishihara H. A facile preparation of selenohydantoins using isoselenocyanate. J. Heterocycl. Chem. 2007 44 1 79 81 10.1002/jhet.5570440113
    [Google Scholar]
  140. Chennakrishnareddy G. Nagendra G. Hemantha H.P. Das U. Guru Row T.N. Sureshbabu V.V. Isoselenocyanates derived from Boc/Z-amino acids: Synthesis, isolation, characterization, and application to the efficient synthesis of unsymmetrical selenoureas and selenoureidopeptidomimetics. Tetrahedron 2010 66 34 6718 6724 10.1016/j.tet.2010.06.082
    [Google Scholar]
  141. Hemantha H.P. Sureshbabu V.V. Isoselenocyanates derived from amino acid esters: An expedient synthesis and application to the assembly of selenoureidopeptidomimetics, unsymmetrical Selenoureas and selenohydantoins. J. Pept. Sci. 2010 16 11 644 651 10.1002/psc.1276 20848599
    [Google Scholar]
  142. Garud D.R. Koketsu M. Ishihara H. Isoselenocyanates: A powerful tool for the synthesis of selenium-containing heterocycles. Molecules 2007 12 3 504 535 10.3390/12030504 17851407
    [Google Scholar]
  143. Ivanenkov Y.A. Veselov M.S. Rezekin I.G. Skvortsov D.A. Sandulenko Y.B. Polyakova M.V. Bezrukov D.S. Vasilevsky S.V. Kukushkin M.E. Moiseeva A.A. Finko A.V. Koteliansky V.E. Klyachko N.L. Filatova L.A. Beloglazkina E.K. Zyk N.V. Majouga A.G. Synthesis, isomerization and biological activity of novel 2-selenohydantoin derivatives. Bioorg. Med. Chem. 2016 24 4 802 811 10.1016/j.bmc.2015.12.050 26780833
    [Google Scholar]
  144. Żesławska E. Kincses A. Unger V. Tóth V. Spengler G. Nitek W. Tejchman W. Exocyclic Sulfur and Selenoorganic compounds towards their anticancer effects: Crystallographic and biological studies. Anticancer Res. 2018 38 8 4577 4584 10.21873/anticanres.12762 30061224
    [Google Scholar]
  145. Vyhivskyi O. Dlin E.A. Finko A.V. Stepanova S.P. Ivanenkov Y.A. Skvortsov D.A. Mironov A.V. Zyk N.V. Majouga A.G. Beloglazkina E.K. Copper-promoted C–Se cross-coupling of 2-Selenohydantoins with Arylboronic acids in an open flask. ACS Comb. Sci. 2019 21 6 456 464 10.1021/acscombsci.9b00021 31009196
    [Google Scholar]
  146. Vyhivskyi O. Laikov D.N. Finko A.V. Skvortsov D.A. Zhirkina I.V. Tafeenko V.A. Zyk N.V. Majouga A.G. Beloglazkina E.K. Ullmann-type C–Se cross-coupling in the hydantoin family: Synthesis, mechanistic studies, and tests of biological activity. J. Org. Chem. 2020 85 5 3160 3173 10.1021/acs.joc.9b03045 31944122
    [Google Scholar]
  147. Kukushkin M. Novotortsev V. Filatov V. Ivanenkov Y. Skvortsov D. Veselov M. Shafikov R. Moiseeva A. Zyk N. Majouga A. Beloglazkina E. Synthesis and biological evaluation of S-, O- and Se-containing dispirooxindoles. Molecules 2021 26 24 7645 10.3390/molecules26247645 34946727
    [Google Scholar]
  148. Novotortsev V.K. Kukushkin M.E. Tafeenko V.A. Skvortsov D.A. Kalinina M.A. Timoshenko R.V. Chmelyuk N.S. Vasilyeva L.A. Tarasevich B.N. Gorelkin P.V. Erofeev A.S. Majouga A.G. Zyk N.V. Beloglazkina E.K. Dispirooxindoles based on 2-Selenoxo-Imidazolidin-4-Ones: Synthesis, cytotoxicity and ROS generation ability. Int. J. Mol. Sci. 2021 22 5 2613 10.3390/ijms22052613 33807662
    [Google Scholar]
  149. Finko A.V. Sokolov A.I. Guk D.A. Tafeenko V.A. Moiseeva A.A. Skvortsov D.A. Stomakhin A.A. Beloglazkin A.A. Borisov R.S. Pergushov V.I. Melnikov M.Y. Zyk N.V. Majouga A.G. Beloglazkina E.K. Copper coordination compounds with (5 Z, 5 Z ′)-2,2′-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4 H -imidazol-4-ones. Comparison with sulfur analogue. RSC Advances 2022 12 12 7133 7148 10.1039/D1RA08995A 35424664
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575329643241206101210
Loading
/content/journals/mrmc/10.2174/0113895575329643241206101210
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test