Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Pyrazolic chalcone exhibits diverse therapeutic activities, including anti-inflammatory, antioxidant, antimicrobial, antitumor, and anti-diabetic properties. Structural activity relationship (SAR) studies play a crucial role in understanding the molecular aspects governing their biological effects, guiding the rational design of derivatives with enhanced efficacy and reduced side effects. This review provides an overview of pyrazolic chalcone derivatives, emphasizing their synthesis through both conventional and green methods. In comparison, conventional synthesis methods have been widely employed in the past for the production of pyrazolic chalcones, often relying on traditional chemical processes that may involve the use of hazardous reagents and generate significant waste. On the other hand, green synthesis methods, in harmony with the growing emphasis on sustainable practices in drug discovery, offer a more environmentally friendly alternative. Green synthesis typically involves the use of eco-friendly reagents, solvents, and energy-efficient processes, resulting in reduced environmental impact and improved resource efficiency. Overall, pyrazolic chalcone derivatives represent a promising class of compounds with significant potential for therapeutic applications.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575327555241024111038
2024-11-07
2025-07-15
Loading full text...

Full text loading...

References

  1. DimmockJ.R. EliasD.W. BeazelyM.A. KandepuN.M. Bioactivities of chalcones.Curr. Med. Chem.19996121125114910.2174/0929867306666220401182509 10519918
    [Google Scholar]
  2. BahekarS.P. HandeS.V. AgrawalN.R. ChandakH.S. BhojP.S. GoswamiK. ReddyM.V.R. Sulfonamide chalcones: Synthesis and in vitro exploration for therapeutic potential against Brugia malayi.Eur. J. Med. Chem.201612426226910.1016/j.ejmech.2016.08.042 27592395
    [Google Scholar]
  3. SinghP. AnandA. KumarV. Recent developments in biological activities of chalcones: A mini review.Eur. J. Med. Chem.20148575877710.1016/j.ejmech.2014.08.033 25137491
    [Google Scholar]
  4. KraegeS. StefanK. JuvaleK. RossT. WillmesT. WieseM. The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2).Eur. J. Med. Chem.201611721222910.1016/j.ejmech.2016.03.067 27100033
    [Google Scholar]
  5. MirzaeiH. EmamiS. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity.Eur. J. Med. Chem.201612161063910.1016/j.ejmech.2016.05.067 27318983
    [Google Scholar]
  6. Praveen KumarC.H. ManjunathaS. Novel synthesis of quinolinechalcone derivatives-Design, synthesis, characterization, and antimicrobial activity, Chem. Data.Collect.202242100955
    [Google Scholar]
  7. FarooqS. NgainiZ. One pot and two pot synthetic strategies and biological applications of epoxy-chalcones.Chemistry Africa20203229130210.1007/s42250‑020‑00128‑5
    [Google Scholar]
  8. FarooqS. NgainiZ. One-pot and two-pot synthesis of chalcone based mono and bis-pyrazolines.Tetrahedron Lett.202061415141610.1016/j.tetlet.2019.151416
    [Google Scholar]
  9. DanW. DaiJ. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry.Eur. J. Med. Chem.202018711198010.1016/j.ejmech.2019.111980 31877539
    [Google Scholar]
  10. YangY. WuX. JiaJ. ShenL. ZhouW. YangJ. SongY. Investigation of ultrafast optical nonlinearities in novel bis-chalcone derivatives.Opt. Laser Technol.202012310590310.1016/j.optlastec.2019.105903
    [Google Scholar]
  11. KhidreR.E. RadiniI.A.M. Design, synthesis and docking studies of novel thiazole derivatives incorporating pyridine moiety and assessment as antimicrobial agents.Sci. Rep.2021111784610.1038/s41598‑021‑86424‑7 33846389
    [Google Scholar]
  12. DawoodK.M. EldebssT.M.A. El-ZahabiH.S.A. YousefM.H. Synthesis and antiviral activity of some new bis-1,3-thiazole derivatives.Eur. J. Med. Chem.201510226627610.1016/j.ejmech.2015.08.005 26291036
    [Google Scholar]
  13. GollapalliM. TahaM. JavidM.T. AlmandilN.B. RahimF. WadoodA. MosaddikA. IbrahimM. AlqahtaniM.A. BamaroufY.A. Synthesis of benzothiazole derivatives as a potent α-glucosidase inhibitor.Bioorg. Chem.201985334810.1016/j.bioorg.2018.12.021 30599411
    [Google Scholar]
  14. SiddiquiA.A. PartapS. KhisalS. YarM.S. MishraR. Synthesis, anti-convulsant activity and molecular docking study of novel thiazole pyridazinone hybrid analogues.Bioorg. Chem.20209910358410.1016/j.bioorg.2020.103584 32229345
    [Google Scholar]
  15. JaishreeV. RamdasN. SachinJ. RameshB. In vitro antioxidant properties of new thiazole derivatives.J. Saudi Chem. Soc.201216437137610.1016/j.jscs.2011.02.007
    [Google Scholar]
  16. KasralikarH.M. JadhavarS.C. GoswamiS.V. KaminwarN.S. BhusareS.R. Design, synthesis and molecular docking of pyrazolo[3,4d]thiazole hybrids as potential anti-HIV-1 NNRT inhibitors.Bioorg. Chem.20198643744410.1016/j.bioorg.2019.02.006 30771690
    [Google Scholar]
  17. ModrićM. BožičevićM. FarahoI. BosnarM. ŠkorićI. Design, synthesis and biological evaluation of new 1,3-thiazole derivatives as potential anti-inflammatory agents.J. Mol. Struct.2021123913052610.1016/j.molstruc.2021.130526
    [Google Scholar]
  18. GhotbiG. MahdaviM. NajafiZ. MoghadamF.H. Hamzeh-MivehroudM. DavaranS. DastmalchiS. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease.Bioorg. Chem.202010310418610.1016/j.bioorg.2020.104186 32890993
    [Google Scholar]
  19. KesariC. RamaK.R. SedighiK. StenvangJ. BjörklingF. KankalaS. ThotaN. Synthesis of thiazole linked chalcones and their pyrimidine analogues as anticancer agents.Synth. Commun.20215191406141610.1080/00397911.2021.1884262
    [Google Scholar]
  20. RanaM. ArifR. KhanF.I. MauryaV. SinghR. FaizanM.I. YasmeenS. DarS.H. AlamR. SahuA. AhmadT. Rahisuddin Pyrazoline analogs as potential anticancer agents and their apoptosis, molecular docking, MD simulation, DNA binding and antioxidant studies.Bioorg. Chem.202110810466510.1016/j.bioorg.2021.104665 33571809
    [Google Scholar]
  21. TokF. İrem AbasB. ÇevikÖ. Koçyiğit-KaymakçıoğluB. Design, synthesis and biological evaluation of some new 2-Pyrazoline derivatives as potential anticancer agents.Bioorg. Chem.2020102210406310.1016/j.bioorg.2020.104063 32663669
    [Google Scholar]
  22. RaniM. MohamadY. Synthesis, studies and in vitro antibacterial activity of some 5-(thiophene-2-yl)-phenyl pyrazoline derivatives.J. Saudi Chem. Soc.201418541141710.1016/j.jscs.2011.09.002
    [Google Scholar]
  23. AbdelgalilA. MustafaA.A. AliS.A.M. YassinO.M. Effect of irrigation intervals and foliar spray of zinc and silicon treatments on maize growth and yield components of maize.Curr. Chem. Lett.202211221922610.5267/j.ccl.2021.12.002
    [Google Scholar]
  24. AhmedA.A. MohamedS.K. Abdel-RaheemS.A.A. Assessment of the technological quality characters and chemical composition for some Egyptian Faba bean germplasm.Curr. Chem. Lett.202211435937010.5267/j.ccl.2022.6.001
    [Google Scholar]
  25. ShamsanA.Q.S. FouadM.R. YacoobW.A.R.M. Abdul-MalikM.A. Abdel-RaheemS.A.A. Performance of a variety of treatment processes to purify wastewater in the food industry.Curr. Chem. Lett.202312243143810.5267/j.ccl.2022.11.003
    [Google Scholar]
  26. MertS. "A short review on pyrazole derivatives and their applications".J. Postdr. Res201426472
    [Google Scholar]
  27. RostamiH. ShiriL. KhaniZ. Recent advances in the synthesis of pyrazole scaffolds via nanoparticles: A review.Tetrahedron202211013268810.1016/j.tet.2022.132688
    [Google Scholar]
  28. FusteroS. Simón-FuentesA. Sanz-CerveraJ.F. Recent advances in the synthesis of pyrazoles. A review.Org. Prep. Proced. Int.200941425329010.1080/00304940903077832
    [Google Scholar]
  29. WangY. ZhangW.X. XiZ. Carbodiimide-based synthesis of N-heterocycles: Moving from two classical reactive sites to chemical bond breaking/forming reaction.Chem. Soc. Rev.202049165810584910.1039/C9CS00478E 32658233
    [Google Scholar]
  30. ElgueroJ. Pyrazoles. Comprehensive Heterocyclic Chemistry II. KatritzkyA.R. ReesC.W. ScrivenE.F.V. Oxford, UKElsevier1996Vol. 3175
    [Google Scholar]
  31. ReganA.C. Bicyclic 5-6 Systems with One bridgehead (ring junction) nitrogen Atom: Two extra heteroatoms 1:1. Comprehensive Heterocyclic Chemistry III. KatritzkyA.R. RamsdenC.A. ScrivenE.F.V. TaylorR.J.K. Oxford, UKElsevier2008Vol. 1155158710.1016/B978‑008044992‑0.01012‑9
    [Google Scholar]
  32. Arias-GómezA. GodoyA. PortillaJ. Functional pyrazolo[1,5-a]pyrimidines: Current approaches in synthetic transformations and uses as an antitumor scaffold.Molecules2021269270810.3390/molecules26092708 34063043
    [Google Scholar]
  33. SarmientoJ.T. PortillaJ. Current advances in chemosensors diazoles-based for CN– and F–detection.Curr. Org. Synth.202219
    [Google Scholar]
  34. ZanattaN. CamargoA.F. MarangoniM.A. de MoraesP.A. NogaraP.A. AfolabiB.A. BenckeC.E. RochaJ.B.T. BonacorsoH.G. MartinsM.A.P. Regioselective synthesis of pyrazolyl-pyrimidine hybrids of pharmacological interest.Synthesis202052162347235610.1055/s‑0040‑1707948
    [Google Scholar]
  35. Donaire-AriasA. MontagutA.M. de la BellacasaR.P. Estrada-TejedorR. TeixidóJ. BorrellJ.I. 1H-Pyrazolo[3,4-b]pyridines: Biomedical applications synthesis and biomedical applications.Molecules202227223710.3390/molecules27072237 35408636
    [Google Scholar]
  36. DabholkarV. AnsariF. Synthesis and characterization of selected fused isoxazole and pyrazole derivatives and their antimicrobial activity.J. Serb. Chem. Soc.200974111219122810.2298/JSC0911219D
    [Google Scholar]
  37. SahuS.K. BanerjeeM. SamantrayA. BeheraC. AzamM.A. Synthesis and antiviral evaluation of some new pyrazole and pyrazolopyrimidine derivatives.Trop. J. Pharm. Res.20087961968
    [Google Scholar]
  38. MohammedS. Synthesis and in vitro antitumour activity of some fused pyrazole and pyrazoline ring systems.Saudi Pharm. J.200816135145
    [Google Scholar]
  39. SinghA. RanaA.C. Synthesis and anticonvulsant activity of 1-[(4, 5-dihydro-5-phenyl-3-(phenylamino)pyrazol-1-yl)]ethanoned-erivatives.J. Chem. Pharm. Res.20102505511
    [Google Scholar]
  40. SreenivasaG.M. JaychandranE. ShivkumarB. KumarK.J. Vijay KumarV. Synthesis of bioactive molecule fluorobenzoth-iazole comprising potent heterocyclic moieties for anthelmintic activity.Arch. Pharm. Sci. Res.20091150157
    [Google Scholar]
  41. BhaskarV.H. MohiteP.B. Design,synthesis, characterization and biological evaluation of some novel 1, 5-disubstituted tetrazole as potential anti-inflammatory agent.J. Optoelectronics Bio. Mat.20102231237
    [Google Scholar]
  42. PasinJ.S.M. FerreiraA.P.O. SaraivaA.L.L. RatzlaffV. AndrighettoR. MachadoP. MarchesanS. ZanetteR.A. BonacorsoH.G. ZanattaN. MartinsM.A.P. FerreiraJ. MelloC.F. Antipyretic and antioxidant activities of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles in rats.Braz. J. Med. Biol. Res.201043121193120210.1590/S0100‑879X2010007500139 21140097
    [Google Scholar]
  43. El-SabbaghO.I. BarakaM.M. IbrahimS.M. PannecouqueC. AndreiG. SnoeckR. BalzariniJ. RashadA.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives.Eur. J. Med. Chem.20094493746375310.1016/j.ejmech.2009.03.038 19419804
    [Google Scholar]
  44. BonesiM. LoizzoM.R. StattiG.A. MichelS. TillequinF. MenichiniF. The synthesis and angiotensin converting enzyme (ACE) inhibitory activity of chalcones and their pyrazole derivatives.Bioorg. Med. Chem. Lett.20102061990199310.1016/j.bmcl.2010.01.113 20167484
    [Google Scholar]
  45. KiniS.G. BhatA.R. BryantB. WilliamsonJ.S. DayanF.E. Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives.Eur. J. Med. Chem.20084119 18538450
    [Google Scholar]
  46. ChimentiF. BizzarriB. MannaF. BolascoA. SecciD. ChimentiP. GraneseA. RivaneraD. LilliD. ScaltritoM.M. BrenciagliaM.I. Synthesis and in vitro selective anti-Helicobacter pylori activity of pyrazoline derivatives.Bioorg. Med. Chem. Lett.200515360360710.1016/j.bmcl.2004.11.042 15664821
    [Google Scholar]
  47. GodoyM.C.M. FigheraM.R. SouzaF.R. FloresA.E. RubinM.A. OliveiraM.R. ZanattaN. MartinsM.A.P. BonacorsoH.G. MelloC.F. α2-Adrenoceptors and 5-HT receptors mediate the antinociceptive effect of new pyrazolines, but not of dipyrone.Eur. J. Pharmacol.20044961-3939710.1016/j.ejphar.2004.05.045 15288580
    [Google Scholar]
  48. Turan-ZitouniG. ChevalletP. KiliçF.S. ErolK. Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity.Eur. J. Med. Chem.200035663564110.1016/S0223‑5234(00)00152‑5 10906414
    [Google Scholar]
  49. PriyadarsiniP. UjwalaB. Synthesis and antimicrobial activity of some novel pyrazoles.Der. Pharmacia letter.20124411231128
    [Google Scholar]
  50. RudrapalM. KhanJ. DukhyilA.A.B. AlarousyR.M.I.I. AttahE.I. SharmaT. KhairnarS.J. BendaleA.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics.Molecules20212623717710.3390/molecules26237177 34885754
    [Google Scholar]
  51. ZhuangC. ZhangW. ShengC. ZhangW. XingC. MiaoZ. Chalcone: A privileged structure in medicinal chemistry.Chem. Rev.2017117127762781010.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  52. DhaliwalJ.S. MoshawihS. GohK.W. LoyM.J. HossainM.S. HermansyahA. KotraV. KifliN. GohH.P. DhaliwalS.K.S. YassinH. MingL.C. Pharmacotherapeutics applications and chemistry of chalcone derivatives.Molecules20222720706210.3390/molecules27207062 36296655
    [Google Scholar]
  53. SuwitoH. Ni’matuzahroh KristantiA.N. HayatiS. DewiS.R. AmalinaI. PuspaningsihN.N.T. Antimicrobial activities and in silico analysis of methoxy amino chalcone derivatives.Procedia Chem.20161810311110.1016/j.proche.2016.01.017
    [Google Scholar]
  54. DesaiV. DesaiS. GaonkarS.N. PalyekarU. JoshiS.D. DixitS.K. Novel quinoxalinyl chalcone hybrid scaffolds as enoyl ACP reductase inhibitors: Synthesis, molecular docking and biological evaluation.Bioorg. Med. Chem. Lett.201727102174218010.1016/j.bmcl.2017.03.059 28372908
    [Google Scholar]
  55. CabralB.L.S. da SilvaA.C.G. de ÁvilaR.I. CortezA.P. LuzinR.M. LiãoL.M. de Souza GilE. SanzG. VazB.G. SabinoJ.R. MenegattiR. ValadaresM.C. A novel chalcone derivative, LQFM064, induces breast cancer cells death via p53, p21, KIT and PDGFRA.Eur. J. Pharm. Sci.201710711510.1016/j.ejps.2017.06.018 28627468
    [Google Scholar]
  56. LeãoM. SoaresJ. GomesS. RaimundoL. RamosH. BessaC. QueirozG. DomingosS. PintoM. IngaA. CidadeH. SaraivaL. Enhanced cytotoxicity of prenylated chalcone against tumour cells via disruption of the p53–MDM2 interaction.Life Sci.2015142606510.1016/j.lfs.2015.10.015 26475964
    [Google Scholar]
  57. CastañoL.F. CuartasV. BernalA. InsuastyA. GuzmanJ. VidalO. RubioV. PuertoG. LukáčP. VimbergV. Balíková-NovtonáG. VannucciL. JanataJ. QuirogaJ. AboniaR. NoguerasM. CoboJ. InsuastyB. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity.Eur. J. Med. Chem.2019176506010.1016/j.ejmech.2019.05.013 31096118
    [Google Scholar]
  58. BabuL.S. ShaikA.B. PrasadY.R. Synthesis, antibacterial, antifungal antitubercular activities and molecular docking studies of nitrophenyl derivatives.Int. J. Life Sci. Pharma Res.2019915464
    [Google Scholar]
  59. CaoZ. YangJ. XuR. SongQ. ZhangX. LiuH. QiangX. LiY. TanZ. DengY. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment.Bioorg. Med. Chem.20182651102111510.1016/j.bmc.2018.01.030 29409707
    [Google Scholar]
  60. ÖzdemirA. AltıntopM.D. Turan-ZitouniG. ÇiftçiG.A. Ertorunİ. AlataşÖ. KaplancıklıZ.A. Synthesis and evaluation of new indole-based chalcones as potential antiinflammatory agents.Eur. J. Med. Chem.20158930430910.1016/j.ejmech.2014.10.056 25462246
    [Google Scholar]
  61. KumariS. PaliwalS.K. ChauhanR. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity.Curr. Bioact. Compd.2018141394710.2174/1573407212666161101152735
    [Google Scholar]
  62. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents.Eur. J. Med.Chem.201593401−41393
    [Google Scholar]
  63. KumarC.H.P. ManjunathaS.K. NandeshwarappaB.P. Synthesis of novel pyrazolic analogues of chalcones as potential antibacterial and antifungal agents.Curr. Chem. Lett.202312361362210.5267/j.ccl.2023.2.001
    [Google Scholar]
  64. HawashM.M.A. KahramanD.C. ErenF. Cetin AtalayR. BaytasS.N. Synthesis and biological evaluation of novel pyrazolic chalcone derivatives as novel hepatocellular carcinoma therapeutics.Eur. J. Med. Chem.2017129122610.1016/j.ejmech.2017.02.002 28219046
    [Google Scholar]
  65. BandgarB.P. GawandeS.S. BodadeR.G. GawandeN.M. KhobragadeC.N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents.Bioorg. Med. Chem.200917248168817310.1016/j.bmc.2009.10.035 19896853
    [Google Scholar]
  66. Al-MaqtariH.M. JamalisJ. HaddaT.B. SankaranarayananM. ChanderS. AhmadN.A. Mohd SiratH. AlthagafiI.I. MabkhotY.N. Synthesis, characterization, POM analysis and antifungal activity of novel heterocyclic chalcone derivatives containing acylated pyrazole.Res. Chem. Intermed.20174331893190710.1007/s11164‑016‑2737‑y
    [Google Scholar]
  67. Sankappa RaiU. IsloorA.M. ShettyP. PaiK.S.R. FunH.K. Synthesis and in vitro biological evaluation of new pyrazole chalcones and heterocyclic diamides as potential anticancer agents.Arab. J. Chem.20158331732110.1016/j.arabjc.2014.01.018
    [Google Scholar]
  68. UrbonavičiusA. FortunatoG. AmbrazaitytėE. PlytninkienėE. BieliauskasA. MilišiūnaitėV. LuisiR. ArbačiauskienėE. KrikštolaitytėS. ŠačkusA. Synthesis and characterization of novel heterocyclic chalcones from 1-Phenyl-1H-pyrazol-3-ol.Molecules20222712375210.3390/molecules27123752 35744875
    [Google Scholar]
  69. InsuastyB. TigrerosA. OrozcoF. QuirogaJ. AboníaR. NoguerasM. SanchezA. CoboJ. Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents.Bioorg. Med. Chem.201018144965497410.1016/j.bmc.2010.06.013 20594863
    [Google Scholar]
  70. KumarP. KumarS. HusainK. KumarA. An efficient synthesis of pyrazole chalcones under solvent free conditions at room temperature.Chin. Chem. Lett.2011221374010.1016/j.cclet.2010.07.019
    [Google Scholar]
  71. GugulothR. AnjaneyuluK. MekalaH. SridharM. Green synthesis and antimicrobial activity of 1,3-diaryl pyrazole based chalcone derivatives.Res. J. Chem. Environ.20222610172174
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575327555241024111038
Loading
/content/journals/mrmc/10.2174/0113895575327555241024111038
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test