Skip to content
2000
Volume 25, Issue 5
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Sodium‐Glucose Co‐transporter‐1/2 (SGLT1/2) inhibitors (also called glifozins) are a class of glucose‐decreasing drugs in adults with Type 2 Diabetes (T2D). SGLT2 inhibitors diminish sodium and glucose reabsorption in the renal proximal convoluted tubule. Recent clinical trials have revealed that SGLT2 inhibitors might be beneficial for treating diseases other than diabetes, including chronic renal disease and Heart Failure (HF). Currently, SGLT2 inhibitors are recommended not only for the glycemic management of T2D but also for cardiovascular protection. SGLT2 inhibitors have become one of the foundational drugs for HF with reduced Ejection Fraction (HFrEF) treatment and the first medications with proven prognostic benefit in HF with preserved Ejection Fraction (HFpEF). At present, 11 SGLT1/2 inhibitors have been approved for clinical use in different countries. Beyond their anti-hyperglycemic effect, these inhibitors have shown clear cardio- and nephroprotective properties. A growing body of research studies suggests that SGLT1/2 inhibitors may provide potential clinical benefits in metabolic as well as oncological, hematological, and neurological disorders.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575325210240805092741
2024-08-19
2025-06-23
Loading full text...

Full text loading...

References

  1. VallonV. ThomsonS.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition.Diabetologia201760221522510.1007/s00125‑016‑4157‑327878313
    [Google Scholar]
  2. GorboulevV. SchürmannA. VallonV. KippH. JaschkeA. KlessenD. FriedrichA. ScherneckS. RiegT. CunardR. Veyhl-WichmannM. SrinivasanA. BalenD. BreljakD. RexhepajR. ParkerH.E. GribbleF.M. ReimannF. LangF. WieseS. SabolicI. SendtnerM. KoepsellH. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion.Diabetes201261118719610.2337/db11‑102922124465
    [Google Scholar]
  3. CavallariI. CrispinoS.P. SegretiA. UssiaG.P. GrigioniF. Practical guidance for the use of SGLT2 inhibitors in heart failure.Am. J. Cardiovasc. Drugs202323660962110.1007/s40256‑023‑00601‑937620653
    [Google Scholar]
  4. NespouxJ. VallonV. Renal effects of SGLT2 inhibitors.Curr. Opin. Nephrol. Hypertens.202029219019810.1097/MNH.000000000000058431815757
    [Google Scholar]
  5. PaddaI.S. MahtaniA.U. ParmarM. Sodium-Glucose transport protein 2 (SGLT2) inhibitors.StatPearls.Treasure Island, FLStatPearls Publishing2023
    [Google Scholar]
  6. VickH. DiedrichD.F. BaumannK. Reevaluation of renal tubular glucose transport inhibition by phlorizin analogs.Am. J. Physiol.1973224355255710.1152/ajplegacy.1973.224.3.5524691268
    [Google Scholar]
  7. HedigerM.A. CoadyM.J. IkedaT.S. WrightE.M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter.Nature1987330614637938110.1038/330379a02446136
    [Google Scholar]
  8. TsujiharaK. HonguM. SaitoK. InamasuM. ArakawaK. OkuA. MatsumotoM. Na(+)-glucose cotransporter inhibitors as antidiabetics. I. Synthesis and pharmacological properties of 4′-dehydroxyphlorizin derivatives based on a new concept.Chem. Pharm. Bull. (Tokyo)19964461174118010.1248/cpb.44.11748814948
    [Google Scholar]
  9. OkuA. UetaK. ArakawaK. IshiharaT. NawanoM. KuronumaY. MatsumotoM. SaitoA. TsujiharaK. AnaiM. AsanoT. KanaiY. EndouH. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes.Diabetes19994891794180010.2337/diabetes.48.9.179410480610
    [Google Scholar]
  10. WrightE.M. SGLT2 inhibitors: Physiology and pharmacology.Kidney36020212122027203710.34067/KID.0002772021
    [Google Scholar]
  11. JonesD. Diabetes field cautiously upbeat despite possible setback for leading SGLT2 inhibitor.Nat. Rev. Drug Discov.201110964564610.1038/nrd354621878967
    [Google Scholar]
  12. MarkhamA. Remogliflozin etabonate: First global approval.Drugs201979101157116110.1007/s40265‑019‑01150‑931201711
    [Google Scholar]
  13. HoyS.M. Bexagliflozin: First approval.Drugs202383544745310.1007/s40265‑023‑01848‑x36867399
    [Google Scholar]
  14. ZhangY. XieP. LiY. ChenZ. ShiA. Mechanistic evaluation of the inhibitory effect of four SGLT-2 inhibitors on SGLT 1 and SGLT 2 using physiologically based pharmacokinetic (PBPK) modeling approaches.Front. Pharmacol.202314114200310.3389/fphar.2023.114200337342592
    [Google Scholar]
  15. GiaccariA. Expanding the use of SGLT2i in diabetes beyond type 2.Diabetes Care2024471505110.2337/dci23‑006538117995
    [Google Scholar]
  16. PloskerG.L. Dapagliflozin: A review of its use in patients with type 2 diabetes.Drugs201474182191220910.1007/s40265‑014‑0324‑325389049
    [Google Scholar]
  17. PooleR.M. DungoR.T. Ipragliflozin: First global approval.Drugs201474561161710.1007/s40265‑014‑0204‑x24668021
    [Google Scholar]
  18. PooleR.M. ProsslerJ.E. Tofogliflozin: First global approval.Drugs201474893994410.1007/s40265‑014‑0229‑124848755
    [Google Scholar]
  19. MarkhamA. ElkinsonS. Luseogliflozin: First global approval.Drugs201474894595010.1007/s40265‑014‑0230‑824848756
    [Google Scholar]
  20. MarkhamA. KeamS.J. Sotagliflozin: First Global Approval.Drugs20197991023102910.1007/s40265‑019‑01146‑531172412
    [Google Scholar]
  21. AffanM. DarM.S. Sotagliflozin: An insight into the first dual SGLT inhibitor now approved for heart failure.Ir. J. Med. Sci.202310.1007/s11845‑023‑03474‑837523069
    [Google Scholar]
  22. Wang-LakshmanL. MendonzaA.E. HuberR. WallesM. HeY. JarugulaV. Pharmacokinetics, metabolism, and excretion of licogliflozin, a dual inhibitor of SGLT1/2, in rats, dogs, and humans.Xenobiotica202151441342610.1080/00498254.2020.186733133413022
    [Google Scholar]
  23. ZhangY. LiuY. YuC. WangY. ZhanY. LiuH. ZouJ. JiaJ. ChenQ. ZhongD. Tolerability, Pharmacokinetic, and pharmacodynamic profiles of henagliflozin, a novel selective inhibitor of sodium-glucose cotransporter 2, in healthy subjects following single- and multiple-dose administration.Clin. Ther.202143239640910.1016/j.clinthera.2020.12.01233454124
    [Google Scholar]
  24. ZelnikerT.A. WiviottS.D. RazI. Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.H.; Sabatine, M.S. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials.Lancet201939310166313910.1016/S0140‑6736(18)32590‑X30424892
    [Google Scholar]
  25. MonzoL. FerrariI. CicognaF. TotaC. CalòL. Sodium-glucose co-transporter-2 inhibitors eligibility in patients with heart failure with reduced ejection fraction.Int. J. Cardiol.2021341565910.1016/j.ijcard.2021.08.03534454968
    [Google Scholar]
  26. PabelS. HamdaniN. SinghJ. SossallaS. Potential mechanisms of SGLT2 inhibitors for the treatment of heart failure with preserved ejection fraction.Front. Physiol.20211275237010.3389/fphys.2021.75237034803735
    [Google Scholar]
  27. RossingP. CaramoriM.L. ChanJ.C.N. HeerspinkH.J.L. HurstC. KhuntiK. LiewA. MichosE.D. NavaneethanS.D. OlowuW.A. SaduskyT. TandonN. TuttleK.R. WannerC. WilkensK.G. ZoungasS. de BoerI.H. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease.Kidney Int.20221025S1S12710.1016/j.kint.2022.06.00836272764
    [Google Scholar]
  28. SolomonS.D. McMurrayJ.J.V. ClaggettB. de BoerR.A. DeMetsD. HernandezA.F. InzucchiS.E. KosiborodM.N. LamC.S.P. MartinezF. ShahS.J. DesaiA.S. JhundP.S. BelohlavekJ. ChiangC.E. BorleffsC.J.W. Comin-ColetJ. DobreanuD. DrozdzJ. FangJ.C. Alcocer-GambaM.A. Al HabeebW. HanY. Cabrera HonorioJ.W. JanssensS.P. KatovaT. KitakazeM. MerkelyB. O’MearaE. SaraivaJ.F.K. TereshchenkoS.N. ThiererJ. VaduganathanM. VardenyO. VermaS. PhamV.N. WilderängU. ZaozerskaN. BachusE. LindholmD. PeterssonM. LangkildeA.M. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction.N. Engl. J. Med.2022387121089109810.1056/NEJMoa220628636027570
    [Google Scholar]
  29. PereiraM.J. ErikssonJ.W. Emerging Role of SGLT-2 Inhibitors for the treatment of obesity.Drugs201979321923010.1007/s40265‑019‑1057‑030701480
    [Google Scholar]
  30. CusiK. IsaacsS. BarbD. BasuR. CaprioS. GarveyW.T. KashyapS. MechanickJ.I. MouzakiM. NadolskyK. RinellaM.E. VosM.B. YounossiZ. American association of clinical endocrinology clinical practice guideline for the diagnosis and management of nonalcoholic fatty liver disease in primary care and endocrinology clinical settings.Endocr. Pract.202228552856210.1016/j.eprac.2022.03.01035569886
    [Google Scholar]
  31. BorisovA.N. KutzA. ChristE.R. HeimM.H. EbrahimiF. Canagliflozin and metabolic associated fatty liver disease in patients with diabetes mellitus: New insights from CANVAS.J. Clin. Endocrinol. Metab.2023108112940294910.1210/clinem/dgad24937149821
    [Google Scholar]
  32. AtalS. FatimaZ. SinghS. BalakrishnanS. JoshiR. Remogliflozin: The new low cost SGLT-2 inhibitor for type 2 diabetes mellitus.Diabetol. Int.202112324725310.1007/s13340‑020‑00472‑434150432
    [Google Scholar]
  33. TakamuraT. KakuK. YoshidaA. KusakabeH. NakamuraH. SuganamiH. Reductions in liver enzymes are associated with anti-hyperglycaemic and anti-obesity effects of tofogliflozin in people with type 2 diabetes: Post-hoc analyses.Endocrinol. Diabetes Metab.202471e46110.1002/edm2.46137986236
    [Google Scholar]
  34. BealB. SchutteA.E. NeuenB.L. Blood pressure effects of SGLT2 inhibitors: Mechanisms and clinical evidence in different populations.Curr. Hypertens. Rep.2023251242943510.1007/s11906‑023‑01281‑137948021
    [Google Scholar]
  35. AllegrettiA.S. ZhangW. ZhouW. ThurberT.K. RigbyS.P. Bowman-StroudC. TrescoliC. SerusclatP. FreemanM.W. HalvorsenY.D.C. Safety and effectiveness of bexagliflozin in patients with type 2 diabetes mellitus and stage 3a/3b CKD.Am. J. Kidney Dis.201974332833710.1053/j.ajkd.2019.03.41731101403
    [Google Scholar]
  36. DholariyaS. DuttaS. SinghR. ParchwaniD. SonagraA. KaliyaM. Bexagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, for improvement of glycemia in type 2 diabetes mellitus: A systematic review and meta-analysis.Expert Opin. Pharmacother.202324182187219810.1080/14656566.2023.226985437817422
    [Google Scholar]
  37. BanerjeeM. PalR. MaisnamI. ChowdhuryS. MukhopadhyayS. Serum uric acid lowering and effects of sodium‐glucose cotransporter‐2 inhibitors on gout: A meta‐analysis and meta‐regression of randomized controlled trials.Diabetes Obes. Metab.20232592697270310.1111/dom.1515737334516
    [Google Scholar]
  38. McCormickN. YokoseC. WeiJ. LuN. WexlerD.J. Aviña-ZubietaJ.A. De VeraM.A. ZhangY. ChoiH.K. Comparative effectiveness of sodium-glucose cotransporter-2 inhibitors for recurrent gout flares and gout-primary emergency department visits and hospitalizations.Ann. Intern. Med.202317681067108010.7326/M23‑072437487215
    [Google Scholar]
  39. ZłotekM. KurowskaA. HerbetM. Piątkowska-ChmielI. GLP-1 Analogs, SGLT-2, and DPP-4 inhibitors: A triad of hope for Alzheimer’s disease Therapy.Biomedicines20231111303510.3390/biomedicines1111303538002034
    [Google Scholar]
  40. VafaR.G. SabahizadehA. MofarrahR. Guarding the heart: How SGLT-2 inhibitors protect against chemotherapy-induced cardiotoxicity.Curr. Probl. Cardiol.202449310235010.1016/j.cpcardiol.2023.10235038128634
    [Google Scholar]
  41. BasakD. GamezD. DebS. SGLT2 inhibitors as potential anticancer agents.Biomedicines2023117186710.3390/biomedicines1107186737509506
    [Google Scholar]
  42. ShodaK. TsujiS. NakamuraS. EgashiraY. EnomotoY. NakayamaN. ShimazawaM. IwamaT. HaraH. Canagliflozin inhibits glioblastoma growth and proliferation by activating AMPK.Cell. Mol. Neurobiol.202343287989210.1007/s10571‑022‑01221‑835435536
    [Google Scholar]
  43. ZhangK.X. KanC.X. HanF. ZhangJ.W. SunX.D. Elucidating the cardioprotective mechanisms of sodium-glucose cotransporter-2 inhibitors beyond glycemic control.World J. Diabetes202415213714110.4239/wjd.v15.i2.13738464375
    [Google Scholar]
  44. SoliniA. GianniniL. SeghieriM. VitoloE. TaddeiS. GhiadoniL. BrunoR.M. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study.Cardiovasc. Diabetol.201716113810.1186/s12933‑017‑0621‑829061124
    [Google Scholar]
  45. SchönbergerE. MihaljevićV. SteinerK. ŠarićS. KurevijaT. MajnarićL.T. Bilić ĆurčićI. Canecki-VaržićS. Immunomodulatory effects of SGLT2 inhibitors—targeting inflammation and oxidative stress in aging.Int. J. Environ. Res. Public Health20232017667110.3390/ijerph2017667137681811
    [Google Scholar]
  46. AbdelrahmanA.M. AwadA.S. Abdel-RahmanE.M. Sodium-glucose co-transporter 2 inhibitors: Mechanism of action and efficacy in non-diabetic kidney disease from bench to bed-side.J. Clin. Med.202413495610.3390/jcm1304095638398269
    [Google Scholar]
  47. ChiltonR. TikkanenI. CannonC.P. CroweS. WoerleH.J. BroedlU.C. JohansenO.E. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes.Diabetes Obes. Metab.201517121180119310.1111/dom.1257226343814
    [Google Scholar]
  48. de BoerI.H. KhuntiK. SaduskyT. TuttleK.R. NeumillerJ.J. RheeC.M. RosasS.E. RossingP. BakrisG. Diabetes management in chronic kidney disease: A consensus report by the american diabetes association (ADA) and kidney disease: Improving global outcomes (KDIGO).Diabetes Care202245123075309010.2337/dci22‑002736189689
    [Google Scholar]
  49. HeidenreichP.A. BozkurtB. AguilarD. AllenL.A. ByunJ.J. ColvinM.M. DeswalA. DraznerM.H. DunlayS.M. EversL.R. FangJ.C. FedsonS.E. FonarowG.C. HayekS.S. HernandezA.F. KhazanieP. KittlesonM.M. LeeC.S. LinkM.S. MilanoC.A. NnachetaL.C. SandhuA.T. StevensonL.W. VardenyO. VestA.R. YancyC.W. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the american college of cardiology/american heart association joint committee on clinical practice guidelines.Circulation202214518e895e103210.1161/CIR.000000000000106335363499
    [Google Scholar]
  50. YangF. MengR. ZhuD.L. Cardiovascular effects and mechanisms of sodium‐glucose cotransporter‐2 inhibitors.Chronic Dis. Transl. Med.20206423924510.1016/j.cdtm.2020.07.00233336169
    [Google Scholar]
  51. FadiniG.P. LongatoE. MorieriM.L. Del PratoS. AvogaroA. SoliniA. BaldassarreM. ConsoliA. MorganetS. ZugaroA. BaroniM.G. AndreozziF. GattiA. GattiA. De RiuS. Del BuonoA. AldigeriR. BonadonnaR. CasA.D. VazzanaA. AntoniniM. MorettiV. VolsiP.L. CesareM. ZanetteG. CarlettiS. D’AngeloP. LetoG. LeonettiF. D’OnofrioL. MaddaloniE. BuzzettiR. FrontoniS. CavalloG. MoranoS. FilardiT. CapeceU. GiaccariA. BossiA.C. MeregalliG. QuerciF. GaglioA. ResiV. OrsiE. FazionS. FranzettiI.G. BerraC. ManfriniS. GarrapaG. LucarelliG. RiccialdelliL. TortatoE. ZavattaroM. AimarettiG. CavalotF. BeccutiG. BroglioF. FattorB. CazzettaG. LamacchiaO. RauseoA. De CosmoS. CauR. GhianiM. Di BenedettoA. Di PinoA. PiroS. PurrelloF. FrittittaL. MilluzzoA. RussoG. Long-term benefits of dapagliflozin on renal outcomes of type 2 diabetes under routine care: A comparative effectiveness study on propensity score matched cohorts at low renal risk.Lancet Reg. Health Eur.20243810084710.1016/j.lanepe.2024.10084738328413
    [Google Scholar]
  52. FengL. ChenY. LiN. YangX. ZhouL. LiH. WangT. XieM. LiuH. Dapagliflozin delays renal fibrosis in diabetic kidney disease by inhibiting YAP/TAZ activation.Life Sci.202332212167110.1016/j.lfs.2023.12167137023953
    [Google Scholar]
  53. TakebayashiK. InukaiT. Effect of sodium glucose cotransporter 2 inhibitors with low SGLT2/SGLT1 selectivity on circulating glucagon-like peptide 1 levels in type 2 diabetes mellitus.J. Clin. Med. Res.20179974575310.14740/jocmr3112w28811850
    [Google Scholar]
  54. BhattD.L. SzarekM. PittB. CannonC.P. LeiterL.A. McGuireD.K. LewisJ.B. RiddleM.C. InzucchiS.E. KosiborodM.N. CherneyD.Z.I. DwyerJ.P. SciricaB.M. BaileyC.J. DíazR. RayK.K. UdellJ.A. LopesR.D. LapuertaP. StegP.G. Sotagliflozin in patients with diabetes and chronic kidney disease.N. Engl. J. Med.2021384212913910.1056/NEJMoa203018633200891
    [Google Scholar]
  55. DeeksE.D. ScheenA.J. Canagliflozin: A review in type 2 diabetes.Drugs201777141577159210.1007/s40265‑017‑0801‑628836175
    [Google Scholar]
  56. SamukawaY. MutohM. ChenS. MizuiN. Mechanism-based pharmacokinetic–pharmacodynamic modeling of luseogliflozin, a sodium glucose co-transporter 2 inhibitor, in Japanese patients with type 2 diabetes Mellitus.Biol. Pharm. Bull.20174081207121810.1248/bpb.b16‑0099828769002
    [Google Scholar]
  57. IkedaS. TakanoY. SchwabD. PortronA. Kasahara-ItoN. SaitoT. IidaS. Effect of renal impairment on the pharmacokinetics and pharmacodynamics of tofogliflozin (a selective SGLT2 Inhibitor) in patients with type 2 diabetes mellitus.Drug Res. (Stuttg.)201969631432210.1055/a‑0662‑020930103216
    [Google Scholar]
  58. ScheenA.J. Pharmacokinetics, pharmacodynamics and clinical use of sglt2 inhibitors in patients with type 2 diabetes mellitus and chronic kidney disease.Clin. Pharmacokinet.201554769170810.1007/s40262‑015‑0264‑425805666
    [Google Scholar]
  59. NealB. PerkovicV. MahaffeyK.W. de ZeeuwD. FulcherG. EronduN. ShawW. LawG. DesaiM. MatthewsD.R. Canagliflozin and cardiovascular and renal events in type 2 diabetes.N. Engl. J. Med.2017377764465710.1056/NEJMoa161192528605608
    [Google Scholar]
  60. CefaloC.M.A. CintiF. MoffaS. ImprontaF. SoriceG.P. MezzaT. PontecorviA. GiaccariA. Sotagliflozin, the first dual SGLT inhibitor: Current outlook and perspectives.Cardiovasc. Diabetol.20191812010.1186/s12933‑019‑0828‑y30819210
    [Google Scholar]
  61. PoschM.G. WaltherN. FerranniniE. PowellD.R. BanksP. WasonS. DahmenR. Metabolic, intestinal, and cardiovascular effects of sotagliflozin compared with empagliflozin in patients with type 2 diabetes: A randomized, double-blind study.Diabetes Care20224592118212610.2337/dc21‑216635817022
    [Google Scholar]
  62. KimM.S. SongY.K. ChoiJ.S. JiH.Y. YangE. ParkJ.S. KimH.S. KimM.J. ChoI.K. ChungS.J. ChaeY.J. LeeK.R. Physiologically based pharmacokinetic modelling to predict pharmacokinetics of enavogliflozin, a sodium-dependent glucose transporter 2 inhibitor, in humans.Pharmaceutics202315394210.3390/pharmaceutics1503094236986803
    [Google Scholar]
  63. DuttaD. HarishB.G. AnneB. NagendraL. Role of novel sodium glucose co-transporter-2 inhibitor enavogliflozin in type-2 diabetes: A systematic review and meta-analysis.Diabetes Metab. Syndr.202317810281610.1016/j.dsx.2023.10281637421885
    [Google Scholar]
  64. TomlinsonB. LiY.H. Canagliflozin + metformin ER for the treatment of type 2 diabetes: the evidence to date.Expert Opin. Pharmacother.202324181937194710.1080/14656566.2023.227618037881952
    [Google Scholar]
  65. Weinberg SibonyR. SegevO. DorS. RazI. Drug therapies for diabetes.Int. J. Mol. Sci.202324241714710.3390/ijms24241714738138975
    [Google Scholar]
  66. BozkurtB. HershbergerR.E. ButlerJ. GradyK.L. HeidenreichP.A. IslerM.L. KirklinJ.K. WeintraubW.S. 2021 ACC/AHA key data elements and definitions for heart failure.J. Am. Coll. Cardiol.202177162053215010.1016/j.jacc.2020.11.01233250265
    [Google Scholar]
  67. BiegusJ. FudimM. SalahH.M. HeerspinkH.J.L. VoorsA.A. PonikowskiP. Sodium–glucose cotransporter‐2 inhibitors in heart failure: Potential decongestive mechanisms and current clinical studies.Eur. J. Heart Fail.20232591526153610.1002/ejhf.296737477086
    [Google Scholar]
  68. HernandezM. SullivanR.D. McCuneM.E. ReedG.L. GladyshevaI.P. Sodium-glucose cotransporter-2 inhibitors improve heart failure with reduced ejection fraction outcomes by reducing edema and congestion.Diagnostics (Basel)202212498910.3390/diagnostics1204098935454037
    [Google Scholar]
  69. SullivanR.D. McCuneM.E. HernandezM. ReedG.L. GladyshevaI.P. Suppression of cardiogenic edema with sodium–glucose cotransporter-2 inhibitors in heart failure with reduced ejection fraction: Mechanisms and insights from pre-clinical studies.Biomedicines2022108201610.3390/biomedicines1008201636009562
    [Google Scholar]
  70. RådholmK. FigtreeG. PerkovicV. SolomonS.D. MahaffeyK.W. de ZeeuwD. FulcherG. BarrettT.D. ShawW. DesaiM. MatthewsD.R. NealB. Canagliflozin and heart failure in type 2 diabetes mellitus.Circulation2018138545846810.1161/CIRCULATIONAHA.118.03422229526832
    [Google Scholar]
  71. GreeneS.J. ButlerJ. KosiborodM.N. Chapter 3: Clinical trials of sodium-glucose co-transporter-2 inhibitors for treatment of heart failure.Am. J. Med.20241372S25S3410.1016/j.amjmed.2023.04.01938184323
    [Google Scholar]
  72. ButlerJ. PackerM. FilippatosG. FerreiraJ.P. ZellerC. SchneeJ. BrueckmannM. PocockS.J. ZannadF. AnkerS.D. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction.Eur. Heart J.202243541642410.1093/eurheartj/ehab79834878502
    [Google Scholar]
  73. KotitS. Lessons from a pre-specified meta-analysis of sodium-glucose cotransporter-2 (SGLT2) inhibitors in heart failure: Time for new clinical recommendations.Glob. Cardiol. Sci. Pract.202320232e20231410.21542/gcsp.2023.1437351098
    [Google Scholar]
  74. JhundP.S. KondoT. ButtJ.H. DochertyK.F. ClaggettB.L. DesaiA.S. VaduganathanM. GasparyanS.B. BengtssonO. LindholmD. PeterssonM. LangkildeA.M. de BoerR.A. DeMetsD. HernandezA.F. InzucchiS.E. KosiborodM.N. KøberL. LamC.S.P. MartinezF.A. SabatineM.S. ShahS.J. SolomonS.D. McMurrayJ.J.V. Dapagliflozin across the range of ejection fraction in patients with heart failure: A patient-level, pooled meta-analysis of DAPA-HF and DELIVER.Nat. Med.20222891956196410.1038/s41591‑022‑01971‑436030328
    [Google Scholar]
  75. VaduganathanM. DochertyK.F. ClaggettB.L. JhundP.S. de BoerR.A. HernandezA.F. InzucchiS.E. KosiborodM.N. LamC.S.P. MartinezF. ShahS.J. DesaiA.S. McMurrayJ.J.V. SolomonS.D. SGLT2 inhibitors in patients with heart failure: A comprehensive meta-analysis of five randomised controlled trials.Lancet20224001035475776710.1016/S0140‑6736(22)01429‑536041474
    [Google Scholar]
  76. JafarT.H. FDA approval of dapagliflozin for chronic kidney disease: A remarkable achievement?Lancet20213981029728328410.1016/S0140‑6736(21)01242‑334097853
    [Google Scholar]
  77. RajG.M. WyawahareM. Dapagliflozin for heart failure: Is it a class effect?Future Cardiol.202117235536110.2217/fca‑2020‑008732755319
    [Google Scholar]
  78. LarkinH.D. FDA expands empagliflozin heart failure indication.JAMA202232713121910.1001/jama.2022.397035380600
    [Google Scholar]
  79. American diabetes association professional practice committee 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes-2022.Diabetes Care202245Suppl. 1S125S14310.2337/dc22‑S00934964831
    [Google Scholar]
  80. Nuffield department of population health renal studies group, & SGLT2 inhibitor Meta-analysis Cardio-renal Trialists’ consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: Collaborative meta-analysis of large placebo-controlled trials.Lancet2022400103651788180110.1016/S0140‑6736(22)02074‑836351458
    [Google Scholar]
  81. AliM.U. ManciniG.B.J. Fitzpatrick-LewisD. ConnellyK.A. O’MearaE. ZierothS. SherifaliD. The effectiveness of sodium-glucose co-transporter 2 inhibitors on cardiorenal outcomes: An updated systematic review and meta-analysis.Cardiovasc. Diabetol.20242317210.1186/s12933‑024‑02154‑w38360604
    [Google Scholar]
  82. MenneJ. DumannE. HallerH. SchmidtB.M.W. Acute kidney injury and adverse renal events in patients receiving SGLT2-inhibitors: A systematic review and meta-analysis.PLoS Med.20191612e100298310.1371/journal.pmed.100298331815931
    [Google Scholar]
  83. HsiangJ.C. WongV.W. Inhibitors in liver patients.Clin. Gastroenterol. Hepatol.202018102168217210.1016/j.cgh.2020.05.02132428710
    [Google Scholar]
  84. MachaS. RoseP. MattheusM. CincaR. PinnettiS. BroedlU.C. WoerleH.J. Pharmacokinetics, safety and tolerability of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in patients with hepatic impairment.Diabetes Obes. Metab.201416211812310.1111/dom.1218323859534
    [Google Scholar]
  85. RigatoM. FadiniG.P. AvogaroA. Safety of sodium‐glucose cotransporter 2 inhibitors in elderly patients with type 2 diabetes: A meta‐analysis of randomized controlled trials.Diabetes Obes. Metab.202325102963296910.1111/dom.1519337402697
    [Google Scholar]
  86. LunatiM.E. CiminoV. GandolfiA. TrevisanM. MontefuscoL. PastoreI. PaceC. BetellaN. FavacchioG. BulgheroniM. BucciarelliL. MassariG. MascardiC. GirelliA. MorpurgoP.S. FolliF. LuziL. MiraniM. PintaudiB. BertuzziF. BerraC. FiorinaP. SGLT2-inhibitors are effective and safe in the elderly: The SOLD study.Pharmacol. Res.202218310639610.1016/j.phrs.2022.10639635970329
    [Google Scholar]
  87. KhouriC. CracowskiJ.L. RoustitM. SGLT‐2 inhibitors and the risk of lower‐limb amputation: Is this a class effect?Diabetes Obes. Metab.20182061531153410.1111/dom.1325529430814
    [Google Scholar]
  88. PetersA.L. BuschurE.O. BuseJ.B. CohanP. DinerJ.C. HirschI.B. Euglycemic diabetic ketoacidosis: A potential complication of treatment with sodium–glucose cotransporter 2 inhibition.Diabetes Care20153891687169310.2337/dc15‑084326078479
    [Google Scholar]
  89. HalimiS. VergèsB. Adverse effects and safety of SGLT-2 inhibitors.Diabetes Metab.2014406Suppl. 1S28S3410.1016/S1262‑3636(14)72693‑X25554069
    [Google Scholar]
  90. WattsN.B. BilezikianJ.P. UsiskinK. EdwardsR. DesaiM. LawG. MeiningerG. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus.J. Clin. Endocrinol. Metab.2016101115716610.1210/jc.2015‑316726580237
    [Google Scholar]
  91. GarcíaM. Arteche-MartinezU. LertxundiU. AguirreC. SGLT2 inhibitors and bladder cancer: Analysis of cases reported in the european pharmacovigilance database.J. Clin. Pharmacol.202161218719210.1002/jcph.172232827151
    [Google Scholar]
  92. UmapathysivamM.M. GuntonJ. StranksS.N. JesudasonD. Euglycemic ketoacidosis in two patients without diabetes after introduction of sodium–glucose cotransporter 2 inhibitor for heart failure with reduced ejection fraction.Diabetes Care202447114014310.2337/dc23‑116337988720
    [Google Scholar]
  93. HayesA.G. RavenL.M. ViardotA. KotlyarE. GreenfieldJ.R. SGLT2 Inhibitor–induced ketoacidosis in a patient without diabetes.Diabetes Care2024471e4e510.2337/dc23‑190337963390
    [Google Scholar]
  94. LiuJ. Chin-YeeB. Chin-YeeI.H. HoJ. SadikovicB. HsiaC.C. Sodium‐glucose cotransporter‐2 inhibitor‐associated erythrocytosis: A retrospective cohort study.J. Intern. Med.2024295110310510.1111/joim.1372237729395
    [Google Scholar]
  95. ArmstrongG.P. Empagliflozin-mediated lithium excretion: A case study and clinical applications.Am. J. Case Rep.202021e923311e110.12659/AJCR.92331132518219
    [Google Scholar]
  96. DevineniD. ManitpisitkulP. VaccaroN. BernardA. SkeeD. MamidiR.N.V.S. TianH. WeinerS. StieltjesH. ShaS. RothenbergP. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on the pharmacokinetics of oral contraceptives, warfarin, and digoxin in healthy participants.Int. J. Clin. Pharmacol. Ther.2015531415310.5414/CP20215725345427
    [Google Scholar]
  97. ScheenA.J. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus.Clin. Pharmacokinet.201453429530410.1007/s40262‑013‑0128‑824420910
    [Google Scholar]
  98. CannarellaR. CondorelliR.A. LeanzaC. GarofaloV. AversaA. PapaG. CalogeroA.E. La VigneraS. Dapagliflozin improves erectile dysfunction in patients with type 2 diabetes mellitus: An open‐label, non‐randomized pilot study.Diabet. Med.2024411e1521710.1111/dme.1521737669131
    [Google Scholar]
  99. SchaefferS.E. DesLauriersC. SpillerH.A. AleguasA. BaezaS. RyanM.L. Retrospective review of SGLT2 inhibitor exposures reported to 13 poison centers.Clin. Toxicol. (Phila.)201856320420810.1080/15563650.2017.135782428812381
    [Google Scholar]
  100. BaigM.A. NogarJ. Euglycemia despite a sodium glucose co-transporter 2 inhibitor overdose.World J. Emerg. Med.202213214714810.5847/wjem.j.1920‑8642.2022.05035237371
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575325210240805092741
Loading
/content/journals/mrmc/10.2174/0113895575325210240805092741
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test