Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

While the use of plants in traditional medicine dates back to 1500 B.C., modern advancements led to the development of innovative therapeutic techniques. On the other hand, in the field of anti-infective agents, lack of efficacy and the onset of resistance stimulate the search for novel agents. Genus is one of the most diverse among perennial plants with a variety of species, properties, and chemical components. The genus is known for its therapeutic values and, in particular, for its role in the origin of antimalarial agents derived from artemisinin. In this review, we aim to provide an updated overview of the evolution of natural and nature-inspired compounds related to the genus that have been proven, and , to possess antimalarial properties. An overview of the chemical composition and a description of the ethnopharmacological aspects will be presented, as well as an updated report on and evidence that allowed the translation of artemisinin and its derivatives from traditional chemistry into modern medicinal chemistry. The biological and structural properties will be discussed, also dedicating attention to the challenging tasks that still are open, such as the identification of optimal combination strategies, the routes of administration, and the full assessment of the mechanism of action.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575320559240820113540
2024-08-26
2025-01-15
Loading full text...

Full text loading...

References

  1. ChanE. TanM. XinJ. SudarsanamS. JohnsonD.E. Interactions between traditional Chinese medicines and Western therapeutics.Curr. Opin. Drug Discov. Devel.20101315065 20047146
    [Google Scholar]
  2. CubukcuB. BrayD.H. WarhurstD.C. MericliA.H. OzhatayN. SariyarG. In vitro antimalarial activity of crude extracts and compounds from Artemisia abrotanum L.Phytother. Res.19904520320410.1002/ptr.2650040510
    [Google Scholar]
  3. LeontiM. CasuL. Traditional medicines and globalization: Current and future perspectives in ethnopharmacology.Front. Pharmacol.201349210.3389/fphar.2013.00092 23898296
    [Google Scholar]
  4. RanaP.K. KumarP. SinghalV.K. RanaJ.C. Uses of local plant biodiversity among the tribal communities of pangi valley of district chamba in cold desert Himalaya, India.ScientificWorldJournal2014201411510.1155/2014/753289 24696658
    [Google Scholar]
  5. TwaijB.M. HasanM.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses.Int. J. Plant Biol.202213141410.3390/ijpb13010003
    [Google Scholar]
  6. ObistioiuD. CristinaR.T. SchmeroldI. ChizzolaR. StolzeK. NichitaI. ChiurciuV. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris.Chem. Cent. J.201481610.1186/1752‑153X‑8‑6 24475951
    [Google Scholar]
  7. BoraK.S. SharmaA. The genus Artemisia: A comprehensive review.Pharm. Biol.201149110110910.3109/13880209.2010.497815 20681755
    [Google Scholar]
  8. WillcoxM. Artemisia species: From traditional medicines to modern antimalarials--and back again.J. Altern. Complement. Med.200915210110910.1089/acm.2008.0327 19236169
    [Google Scholar]
  9. VallèsJ. GarciaS. HidalgoO. MartínJ. PellicerJ. SanzM. GarnatjeT. Biology, genome evolution, biotechnological issues and research including applied perspectives in artemisia (Asteraceae). Advances in Botanical ResearchElsevier201160349419
    [Google Scholar]
  10. HussainA. The genus Artemisia (Asteraceae): A review on its ethnomedicinal prominence and taxonomy with emphasis on foliar anatomy, morphology, and molecular phylogeny Proc.Pak. Acad. Sci.: B. Life Environ. Sci.202057128
    [Google Scholar]
  11. AbadM.J. BedoyaL.M. ApazaL. BermejoP. The artemisia L. Genus: A review of bioactive essential oils.Molecules20121732542256610.3390/molecules17032542 22388966
    [Google Scholar]
  12. SzopaA. PajorJ. KlinP. RzepielaA. ElansaryH.O. Al-ManaF.A. MattarM.A. EkiertH. Artemisia absinthium L.—importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses.Plants202099106310.3390/plants9091063 32825178
    [Google Scholar]
  13. LachenmeierD.W. Wormwood (Artemisia absinthium L.)—A curious plant with both neurotoxic and neuroprotective properties?J. Ethnopharmacol.2010131122422710.1016/j.jep.2010.05.062 20542104
    [Google Scholar]
  14. KlaymanD.L. Artemisia annua: from weed to respectable antimalarial plantHuman Medicinal Agents from Plants1993534242255
    [Google Scholar]
  15. Septembre-MalaterreA. Lalarizo RakotoM. MarodonC. BedouiY. NakabJ. SimonE. HoarauL. SavriamaS. StrasbergD. GuiraudP. SelambaromJ. GasqueP. Artemisia annua, a traditional plant brought to light.Int. J. Mol. Sci.20202114498610.3390/ijms21144986 32679734
    [Google Scholar]
  16. EkiertH. Klimek-SzczykutowiczM. RzepielaA. KlinP. SzopaA. Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials.Molecules20222719642710.3390/molecules27196427 36234965
    [Google Scholar]
  17. TadesseM. Asteraceae compositae. Flora of Ethiopia and EritreaNational Herbarium, Biology Department, Science Faculty, Univ.20044222223
    [Google Scholar]
  18. EkiertH. ŚwiątkowskaJ. KnutE. KlinP. RzepielaA. TomczykM. SzopaA. Artemisia dracunculus (Tarragon): A review of its traditional uses, phytochemistry and pharmacology.Front. Pharmacol.20211265399310.3389/fphar.2021.653993 33927629
    [Google Scholar]
  19. AnibogwuR. JesusK.D. PradhanS. PashikantiS. MateenS. SharmaK. Extraction, isolation and characterization of bioactive compounds from Artemisia and their biological significance: A review.Molecules20212622699510.3390/molecules26226995 34834086
    [Google Scholar]
  20. BalleroM. PoliF. SacchettiG. LoiM.C. Ethnobotanical research in the territory of Fluminimaggiore (south-Western Sardinia).Fitoterapia200172778880110.1016/S0367‑326X(01)00334‑3 11677018
    [Google Scholar]
  21. NigamM. AtanassovaM. MishraA.P. PezzaniR. DevkotaH.P. PlygunS. SalehiB. SetzerW.N. Sharifi-RadJ. Bioactive compounds and health benefits of Artemisia species.Nat. Prod. Commun.2019147
    [Google Scholar]
  22. MoermanD.E. Native american ethnobotany.Timber press1998
    [Google Scholar]
  23. BishtD. KumarD. KumarD. DuaK. ChellappanD.K. Phytochemistry and pharmacological activity of the genus Artemisia.Arch. Pharm. Res.202144543947410.1007/s12272‑021‑01328‑4 33893998
    [Google Scholar]
  24. TrifanA. ZenginG. SinanK.I. SieniawskaE. SawickiR. Maciejewska-TurskaM. Skalikca-WoźniakK. LucaS.V. Unveiling the phytochemical profile and biological potential of five artemisia species.Antioxidants2022115101710.3390/antiox11051017
    [Google Scholar]
  25. Martínez-DíazR.A. Ibáñez-EscribanoA. BurilloJ. HerasL. PradoG. Agulló-OrtuñoM.T. JulioL.F. González-ColomaA. Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil.Mem. Inst. Oswaldo Cruz2015110569369910.1590/0074‑02760140129 26107187
    [Google Scholar]
  26. SinghB. Triterpenoids from Phyllanthus niruri.Indian J. Chem.198928319321
    [Google Scholar]
  27. AjA. Artemisia: A Medicinally Important Genus.JCMAH20187
    [Google Scholar]
  28. TabancaN. DemirciB. BlytheE.K. BernierU.R. AliA. WedgeD.E. KhanI.A. BaşerK.H.C. Composition of Artemisia abrotanum and A. pontica essential oils and their repellent activity against Aedes aegypti.Planta Med.201177125210.1055/s‑0031‑1282383
    [Google Scholar]
  29. LeeJ.Y. ChangE.J. KimH.J. ParkJ.H. ChoiS.W. Antioxidative flavonoids from leaves of Carthamus tinctorius.Arch. Pharm. Res.200225331331910.1007/BF02976632 12135103
    [Google Scholar]
  30. FerreiraJ.F.S. LuthriaD.L. SasakiT. HeyerickA. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer.Molecules20101553135317010.3390/molecules15053135 20657468
    [Google Scholar]
  31. LiY. Qinghaosu (artemisinin): Chemistry and pharmacology.Acta Pharmacol. Sin.20123391141114610.1038/aps.2012.104 22922345
    [Google Scholar]
  32. WangJ. XuC. WongY.K. LiY. LiaoF. JiangT. TuY. Artemisinin, the magic drug discovered from traditional Chinese medicine.Engineering (Beijing)201951323910.1016/j.eng.2018.11.011
    [Google Scholar]
  33. O’NeillP.M. The therapeutic potential of semi-synthetic artemisinin and synthetic endoperoxide antimalarial agents.Expert Opin. Investig. Drugs20051491117112810.1517/13543784.14.9.1117 16144496
    [Google Scholar]
  34. SarderA. PokharelY.R. Synthetic derivatives of artemisinin and cancer.Int. J. Med. Biomed. Sci.201613121610.55530/ijmbiosnepal.v1i3.19
    [Google Scholar]
  35. CzechowskiT. RinaldiM.A. FamodimuM.T. Van VeelenM. LarsonT.R. WinzerT. RathboneD.A. HarveyD. HorrocksP. GrahamI.A. Flavonoid versus artemisinin anti-malarial activity in Artemisia annua whole-leaf extracts.Front. Plant Sci.20191098410.3389/fpls.2019.00984 31417596
    [Google Scholar]
  36. RasoanaivoP. WrightC.W. WillcoxM.L. GilbertB. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions.Malar. J.20111011210.1186/1475‑2875‑10‑S1‑S4 21411015
    [Google Scholar]
  37. TanR. ZhengW. TangH. Biologically active substances from the genus Artemisia.Planta Med.199864429530210.1055/s‑2006‑957438 9619108
    [Google Scholar]
  38. CoghiP. YangL.J. NgJ.P.L. HaynesR.K. MemoM. GianoncelliA. WongV.K.W. RibaudoG. A drug repurposing approach for antimalarials interfering with SARS-COV-2 spike protein receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2).Pharmaceuticals2021141095410.3390/ph14100954 34681178
    [Google Scholar]
  39. RibaudoG. CoghiP. YangL.J. NgJ.P.L. MastinuA. MemoM. WongV.K.W. GianoncelliA. Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptor-binding domain (RBD).Nat. Prod. Res.202236205358536310.1080/14786419.2021.1925894 33977847
    [Google Scholar]
  40. KongL.Y. TanR.X. Artemisinin, a miracle of traditional Chinese medicine.Nat. Prod. Rep.201532121617162110.1039/C5NP00133A 26561737
    [Google Scholar]
  41. SuX.Z. MillerL.H. The discovery of artemisinin and the nobel prize in physiology or medicine.Sci. China Life Sci.201558111175117910.1007/s11427‑015‑4948‑7 26481135
    [Google Scholar]
  42. MonroeA. WilliamsN.A. OgomaS. KaremaC. OkumuF. Reflections on the 2021 World malaria report and the future of malaria control.Malar. J.202221115410.1186/s12936‑022‑04178‑7 35624483
    [Google Scholar]
  43. PoespoprodjoJ.R. DouglasN.M. AnsongD. KhoS. AnsteyN.M. Malaria.Lancet2023402104192328234510.1016/S0140‑6736(23)01249‑7 37924827
    [Google Scholar]
  44. GuptaH. SharmaS. GilyazovaI. SatyamoorthyK. Molecular tools are crucial for malaria elimination.Mol. Biol. Rep.202451155510.1007/s11033‑024‑09496‑4 38642192
    [Google Scholar]
  45. DuffyP.E. Current approaches to malaria vaccines.Curr. Opin. Microbiol.20227010222710.1016/j.mib.2022.102227 36343566
    [Google Scholar]
  46. DailyJ.P. MinutiA. KhanN. Diagnosis, treatment, and prevention of malaria in the US.JAMA2022328546047110.1001/jama.2022.12366 35916842
    [Google Scholar]
  47. MilnerD.A. Malaria pathogenesis.Cold Spring Harb. Perspect. Med.201881a02556910.1101/cshperspect.a025569 28533315
    [Google Scholar]
  48. MeibalanE. MartiM. Biology of malaria transmission.Cold Spring Harb. Perspect. Med.201773a02545210.1101/cshperspect.a025452 27836912
    [Google Scholar]
  49. UdagamaP.V. BamunuarachchiG.S. RatnasooriyaW.D. PremakumaraS. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model.J. Vector Borne Dis.201350427828410.4103/0972‑9062.126413 24499850
    [Google Scholar]
  50. WrightC.W. LinleyP.A. BrunR. WittlinS. HsuE. Ancient Chinese methods are remarkably effective for the preparation of artemisinin-rich extracts of Qing Hao with potent antimalarial activity.Molecules201015280481210.3390/molecules15020804 20335947
    [Google Scholar]
  51. MuellerM.S. KarhagombaI.B. HirtH.M. WemakorE. The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: Agricultural, chemical and clinical aspects.J. Ethnopharmacol.200073348749310.1016/S0378‑8741(00)00289‑0 11091003
    [Google Scholar]
  52. SalaroliR. AndreaniG. BernardiniC. ZannoniA. La MantiaD. ProttiM. ForniM. MercoliniL. IsaniG. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines.Res. Vet. Sci.202215247648410.1016/j.rvsc.2022.09.012 36156377
    [Google Scholar]
  53. ZarrelliA. PollioA. AcetoS. RomanucciV. CarellaF. StefaniP. De NataleA. De VicoG. Optimisation of artemisinin and scopoletin extraction from Artemisia annua with a new modern pressurised cyclic solid–liquid (PCSL) extraction technique.Phytochem. Anal.201930556457110.1002/pca.2853 31238388
    [Google Scholar]
  54. GruessnerB.M. WeathersP.J. In vitro analyses of Artemisia extracts on Plasmodium falciparum suggest a complex antimalarial effect.PLoS One2021163e024087410.1371/journal.pone.0240874 33651845
    [Google Scholar]
  55. PandaS. RoutJ.R. PatiP. RanjitM. SahooS.L. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum.J. Parasit. Dis.2018421222710.1007/s12639‑017‑0956‑9 29491554
    [Google Scholar]
  56. CarltonJ.M. AngiuoliS.V. SuhB.B. KooijT.W. PerteaM. SilvaJ.C. ErmolaevaM.D. AllenJ.E. SelengutJ.D. KooH.L. PetersonJ.D. PopM. KosackD.S. ShumwayM.F. BidwellS.L. ShallomS.J. van AkenS.E. RiedmullerS.B. FeldblyumT.V. ChoJ.K. QuackenbushJ. SedegahM. ShoaibiA. CummingsL.M. FlorensL. YatesJ.R. RaineJ.D. SindenR.E. HarrisM.A. CunninghamD.A. PreiserP.R. BergmanL.W. VaidyaA.B. van LinL.H. JanseC.J. WatersA.P. SmithH.O. WhiteO.R. SalzbergS.L. VenterJ.C. FraserC.M. HoffmanS.L. GardnerM.J. CarucciD.J. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii.Nature2002419690651251910.1038/nature01099 12368865
    [Google Scholar]
  57. KodippiliK. RatnasooriyaW.D. PremakumaraS. UdagamaP.V. An investigation of the antimalarial activity of artemisia vulgaris leaf extract in a rodent malaria model.Int. J. Green Pharm.201154276
    [Google Scholar]
  58. AfsharF.H. DelazarA. JannehO. NazemiyehH. PasdaranA. NaharL. SarkerS.D. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. spicigera, Asteraceae.Rev. Bras. Farmacogn.201121698699010.1590/S0102‑695X2011005000144
    [Google Scholar]
  59. NooriS. TaghikhaniM. HassanZ.M. AllamehaA. MostafaeiA. Tehranolide molecule modulates the immune response, reduce regulatory T cell and inhibits tumor growth in vivo.Mol. Immunol.2010477-81579158410.1016/j.molimm.2010.01.007 20138670
    [Google Scholar]
  60. NahrevaniaH. RustaiyanA. ZamaniZ. TaherkhaniM. IravaniA. An investigation on Anti-malarial effects of tehranolide isolated from Artemisia diffusa against human malaria parasite, Plasmodium falciparum in vitro.J. Parasitol.2015102737810.3923/jp.2015.73.78
    [Google Scholar]
  61. MojarrabM. ShiravandA. DelazarA. Heshmati AfsharF. Evaluation of in vitro antimalarial activity of different extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and fractions of the most potent extracts.ScientificWorldJournal201420141610.1155/2014/825370 24558335
    [Google Scholar]
  62. MojarrabM. NaderiR. Heshmati AfsharF. Screening of different extracts from artemisia species for their potential antimalarial activity.Iran. J. Pharm. Res.2015142603608 25901169
    [Google Scholar]
  63. LiuN.Q. CaoM. FrédérichM. ChoiY.H. VerpoorteR. van der KooyF. Metabolomic investigation of the ethnopharmacological use of Artemisia afra with NMR spectroscopy and multivariate data analysis.J. Ethnopharmacol.2010128123023510.1016/j.jep.2010.01.020 20079415
    [Google Scholar]
  64. SuberuJ.O. GorkaA.P. JacobsL. RoepeP.D. SullivanN. BarkerG.C. LapkinA.A. Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract--possible synergistic and resistance mechanisms.PLoS One2013811e8079010.1371/journal.pone.0080790 24244716
    [Google Scholar]
  65. ElfawalM.A. TowlerM.J. ReichN.G. GolenbockD. WeathersP.J. RichS.M. Dried whole plant Artemisia annua as an antimalarial therapy.PLoS One2012712e5274610.1371/journal.pone.0052746 23289055
    [Google Scholar]
  66. WanY.D. ZangQ.Z. WangJ.S. Studies on the antimalarial action of gelatin capsule of Artemisia annua.Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi1992104290294 1303339
    [Google Scholar]
  67. MirjaliliM.H. TabatabaeiS.M.F. HadianJ. EbrahimiS.N. SonboliA. Phenological variation of the essential oil of Artemisia scoparia Waldst. et Kit from Iran.J. Essent. Oil Res.200719432632910.1080/10412905.2007.9699294
    [Google Scholar]
  68. ZafabM.M. HamdardM.E. HameedA. Screening of Artemisia absinthium for antimalarial effects on Plasmodium berghei in mice: A preliminary report.J. Ethnopharmacol.199030222322610.1016/0378‑8741(90)90011‑H 2255213
    [Google Scholar]
  69. Fernández-Calienes ValdésA. Mendiola MartínezJ. Scull LizamaR. VermeerschM. CosP. MaesL. In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L.Mem. Inst. Oswaldo Cruz2008103661561810.1590/S0074‑02762008000600019 18949336
    [Google Scholar]
  70. AryaA. Kojom FokoL.P. ChaudhryS. SharmaA. SinghV. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions – India and sub-Saharan Africa.Int. J. Parasitol. Drugs Drug Resist.202115435610.1016/j.ijpddr.2020.11.006 33556786
    [Google Scholar]
  71. SnowR.W. GuerraC.A. NoorA.M. MyintH.Y. HayS.I. The global distribution of clinical episodes of Plasmodium falciparum malaria.Nature2005434703021421710.1038/nature03342 15759000
    [Google Scholar]
  72. ChuW.Y. DorloT.P.C. Pyronaridine: A review of its clinical pharmacology in the treatment of malaria.J. Antimicrob. Chemother.202378102406241810.1093/jac/dkad260 37638690
    [Google Scholar]
  73. Siqueira-NetoJ.L. WichtK.J. ChibaleK. BurrowsJ.N. FidockD.A. WinzelerE.A. Antimalarial drug discovery: Progress and approaches.Nat. Rev. Drug Discov.2023221080782610.1038/s41573‑023‑00772‑9 37652975
    [Google Scholar]
  74. SinhaS. SharmaS. SinghK. SwarnkarD. AhmedN. RajputP. SrivastavaB. AnvikarA.R. Efficacy and safety of Artemisinin Combination Therapy for the treatment of uncomplicated Plasmodium falciparum malaria across international borders of India.J. Vector Borne Dis.2024611818910.4103/0972‑9062.392254 38648409
    [Google Scholar]
  75. KayentaoK. OngoibaA. PrestonA.C. HealyS.A. HuZ. SkinnerJ. DoumboS. WangJ. CisseH. DoumtabeD. TraoreA. TraoreH. DjiguibaA. LiS. PetersonM.E. TelscherS. IdrisA.H. AdamsW.C. McDermottA.B. NarpalaS. LinB.C. SerebryannyyL. HickmanS.P. McDougalA.J. VazquezS. ReiberM. SteinJ.A. GallJ.G. CarltonK. SchwablP. TraoreS. KeitaM. ZéguiméA. OuattaraA. DoucoureM.B. DoloA. MurphyS.C. NeafseyD.E. PortugalS. DjimdéA. TraoreB. SederR.A. CromptonP.D. Subcutaneous administration of a monoclonal antibody to prevent malaria.N. Engl. J. Med.2024390171549155910.1056/NEJMoa2312775 38669354
    [Google Scholar]
  76. MaafohC. OnyedibeK. Alternative first-line malaria treatment.Ann. Afr. Med.202423151210.4103/aam.aam_35_23 38358164
    [Google Scholar]
  77. KokoriE. OlatunjiG. AkinboadeA. AkinosoA. EgbunuE. AremuS.A. OkaforC.E. OluwoleO. AderintoN. Triple artemisinin-based combination therapy (TACT): Advancing malaria control and eradication efforts.Malar. J.20242312510.1186/s12936‑024‑04844‑y 38238781
    [Google Scholar]
  78. NostenF. WhiteN.J. Artemisinin-based combination treatment of falciparum malaria.Am. J. Trop. Med. Hyg.2007776_Suppl)(Suppl.18119210.4269/ajtmh.2007.77.18118165491
    [Google Scholar]
  79. DobañoC. NhabombaA.J. ManacaM.N. BerthoudT. AguilarR. QuintóL. BarbosaA. RodríguezM.H. JiménezA. GrovesP.L. SantanoR. BassatQ. AponteJ.J. GuinovartC. DoolanD.L. AlonsoP.L. A balanced proinflammatory and regulatory cytokine signature in young African children is associated with lower risk of clinical malaria.Clin. Infect. Dis.201969582082810.1093/cid/ciy934 30380038
    [Google Scholar]
  80. EastmanR.T. FidockD.A. Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria.Nat. Rev. Microbiol.200971286487410.1038/nrmicro2239 19881520
    [Google Scholar]
  81. Sharifi-RadJ. Herrera-BravoJ. SemwalP. PainuliS. BadoniH. EzzatS.M. FaridM.M. MerghanyR.M. AborehabN.M. SalemM.A. Artemisia Spp.: An update on its chemical composition. In: Pharmacological and Toxicological Profiles.Oxidative Medicine and Cellular Longevity202220225628601
    [Google Scholar]
  82. LeblancC. VasseC. MinodierP. MornandP. NaudinJ. QuinetB. SiriezJ.Y. SorgeF. de SuremainN. ThellierM. KendjoE. FayeA. ImbertP. Management and prevention of imported malaria in children. Update of the French guidelines.Med. Mal. Infect.202050212714010.1016/j.medmal.2019.02.005 30885541
    [Google Scholar]
  83. PullL. LupoglazoffJ.M. BeardmoreM. MichelJ.F. BuffetP. BouchaudO. SiriezJ.Y. Artenimol–piperaquine in children with uncomplicated imported falciparum malaria: Experience from a prospective cohort.Malar. J.201918141910.1186/s12936‑019‑3047‑9 31843017
    [Google Scholar]
  84. BallardS.B. SalingerA. ArguinP.M. DesaiM. TanK.R. Updated CDC recommendations for using artemether-lumefantrine for the treatment of uncomplicated malaria in pregnant women in the United States.MMWR Morb. Mortal. Wkly. Rep.2018671442443110.15585/mmwr.mm6714a4 29649190
    [Google Scholar]
  85. DaddyN.B. KalisyaL.M. BagireP.G. WattR.L. TowlerM.J. WeathersP.J. Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: Case reports.Phytomedicine201732374010.1016/j.phymed.2017.04.006 28732806
    [Google Scholar]
  86. MunyangiJ. Cornet-VernetL. IdumboM. LuC. LutgenP. PerronneC. NgombeN. BiangaJ. MupendaB. LalukalaP. MergeaiG. MumbaD. TowlerM. WeathersP. RETRACTED: Artemisia annua and Artemisia afra tea infusions vs. artesunate-amodiaquine (ASAQ) in treating Plasmodium falciparum malaria in a large scale, double blind, randomized clinical trial.Phytomedicine201957495610.1016/j.phymed.2018.12.002 30668322
    [Google Scholar]
  87. PosadinoA.M. GiordoR. PintusG. MohammedS.A. OrhanI.E. FokouP.V.T. SharopovF. AdetunjiC.O. Gulsunoglu-KonuskanZ. YdyrysA. ArmstrongL. SytarO. MartorellM. RazisA.F.A. ModuB. CalinaD. HabtemariamS. Sharifi-RadJ. ChoW.C. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases.Biomed. Pharmacother.202316311486610.1016/j.biopha.2023.114866 37182516
    [Google Scholar]
  88. WarsameM. GyapongM. MpekaB. RodriguesA. SinglovicJ. BabikerA. MworoziE. AgyepongI. AnsahE. AzairweR. BiaiS. BinkaF. FolbP. GyapongJ. KimbuteO. MachindaZ. KituaA. LutaloT. MajahaM. MamaduJ. MrangoZ. PetzoldM. RujumbaJ. RibeiroI. GomesM. Pre-referral rectal artesunate treatment by community-based treatment providers in ghana, guinea-bissau, Tanzania, and Uganda (Study 18): A cluster-randomized trial.Clin. Infect. Dis.201663Suppl. 5S312S32110.1093/cid/ciw631 27941110
    [Google Scholar]
  89. DondorpA.M. FanelloC.I. HendriksenI.C.E. GomesE. SeniA. ChhaganlalK.D. BojangK. OlaosebikanR. AnunobiN. MaitlandK. KivayaE. AgbenyegaT. NguahS.B. EvansJ. GesaseS. KahabukaC. MtoveG. NadjmB. DeenJ. Mwanga-AmumpaireJ. NansumbaM. KaremaC. UmulisaN. UwimanaA. MokuoluO.A. AdedoyinO.T. JohnsonW.B.R. TshefuA.K. OnyambokoM.A. SakulthaewT. NgumW.P. SilamutK. StepniewskaK. WoodrowC.J. BethellD. WillsB. OnekoM. PetoT.E. von SeidleinL. DayN.P.J. WhiteN.J. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): An open-label, randomised trial.Lancet201037697531647165710.1016/S0140‑6736(10)61924‑1 21062666
    [Google Scholar]
  90. O’NeillP.M. BartonV.E. WardS.A. The molecular mechanism of action of artemisinin--the debate continues.Molecules20101531705172110.3390/molecules15031705 20336009
    [Google Scholar]
  91. QuadrosH.C. SilvaM.C.B. MoreiraD.R.M. The role of the iron protoporphyrins heme and hematin in the antimalarial activity of endoperoxide drugs.Pharmaceuticals20221516010.3390/ph15010060 35056117
    [Google Scholar]
  92. MeshnickS.R. Artemisinin: Mechanisms of action, resistance and toxicity.Int. J. Parasitol.200232131655166010.1016/S0020‑7519(02)00194‑7 12435450
    [Google Scholar]
  93. De DonnoA. GrassiT. IdoloA. GuidoM. PapadiaP. CaccioppolaA. VillanovaL. MerendinoA. BagordoF. FanizziF.P. First-time comparison of the in vitro antimalarial activity of Artemisia annua herbal tea and artemisinin.Trans. R. Soc. Trop. Med. Hyg.20121061169670010.1016/j.trstmh.2012.07.008 22986092
    [Google Scholar]
  94. GolenserJ. WaknineJ.H. KrugliakM. HuntN.H. GrauG.E. Current perspectives on the mechanism of action of artemisinins.Int. J. Parasitol.200636141427144110.1016/j.ijpara.2006.07.011 17005183
    [Google Scholar]
  95. Eckstein-LudwigU. WebbR.J. van GoethemI.D.A. EastJ.M. LeeA.G. KimuraM. O’NeillP.M. BrayP.G. WardS.A. KrishnaS. Artemisinins target the SERCA of Plasmodium falciparum.Nature2003424695195796110.1038/nature01813 12931192
    [Google Scholar]
  96. GarciaL.C. A review of Artemisia Annua L.: Its genetics, biochemical characteristics, and anti-malarial efficacy.Int J Sci Technol201553846
    [Google Scholar]
  97. Byakika-KibwikaP. LamordeM. Mayanja-KizzaH. KhooS. MerryC. Van geertruydenJ.P. Artemether-lumefantrine combination therapy for treatment of uncomplicated malaria: The potential for complex interactions with antiretroviral drugs in hiv-infected individuals.Malar. Res. Treat.201120111510.4061/2011/703730 22312573
    [Google Scholar]
  98. WangJ. ZhangC.J. ChiaW.N. LohC.C.Y. LiZ. LeeY.M. HeY. YuanL.X. LimT.K. LiuM. LiewC.X. LeeY.Q. ZhangJ. LuN. LimC.T. HuaZ.C. LiuB. ShenH.M. TanK.S.W. LinQ. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.Nat. Commun.2015611011110.1038/ncomms10111 26694030
    [Google Scholar]
  99. GaurR. CheemaH.S. KumarY. SinghS.P. YadavD.K. DarokarM.P. KhanF. BhakuniR.S. In vitro antimalarial activity and molecular modeling studies of novel artemisinin derivatives.RSC Advances2015559479594797410.1039/C5RA07697H
    [Google Scholar]
  100. MahapatraR.K. BeheraN. NaikP.K. Molecular modeling and evaluation of binding mode and affinity of artemisinin-quinine hybrid and its congeners with Fe-protoporphyrin-IX as a putative receptor.Bioinformation20128836938010.6026/97320630008369 22570518
    [Google Scholar]
  101. FerreiraJ. FigueiredoA. BarbosaJ. CristinoM. MacedoW. SilvaO. MalheirosB. SerraR. Ciriaco-PinheiroJ. A study of new antimalarial artemisinins through molecular modeling and multivariate analysis.J. Serb. Chem. Soc.201075111533154810.2298/JSC100126124F
    [Google Scholar]
  102. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575320559240820113540
Loading
/content/journals/mrmc/10.2174/0113895575320559240820113540
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): antimalarial; Artemisia; artemisinin; docking; medicinal chemistry; phytochemistry
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test