Skip to content
2000
image of A Review on Recent Trends in Photo-Drug Efficiency of Advanced Biomaterials in Photodynamic Therapy of Cancer

Abstract

Photodynamic Therapy (PDT) has emerged as a highly efficient and non-invasive cancer treatment, which is crucial considering the significant global mortality rates associated with cancer. The effectiveness of PDT primarily relies on the quality of the photosensitizers employed. When exposed to appropriate light irradiation, these photosensitizers absorb energy and transition to an excited state, eventually transferring energy to nearby molecules and generating Reactive Oxygen Species (ROS), including singlet oxygen [1O]. The ability to absorb light in visible and near-infrared wavelengths makes porphyrins and derivatives useful photosensitizers for PDT. Chemically, Porphyrins, composed of tetra-pyrrole structures connected by four methylene groups, represent the typical photosensitizers. The limited water solubility and bio-stability of porphyrin photosensitizers and their non-specific tumor-targeting properties hinder PDT effectiveness and clinical applications. Therefore, a wide range of modification and functionalization techniques have been used to maximize PDT efficiency and develop multidimensional porphyrin-based functional materials. Recent progress in porphyrin-based functional materials has been investigated in this review paper, focusing on two main aspects including the development of porphyrinic amphiphiles that improve water solubility and biocompatibility, and the design of porphyrin-based polymers, including block copolymers with covalent bonds and supramolecular polymers with noncovalent bonds, which provide versatile platforms for PDT applications. The development of porphyrin-based functional materials will allow researchers to significantly expand PDT applications for cancer therapy by opening up new opportunities. With these innovations, porphyrins will overcome their limitations and push PDT to the forefront of cancer treatment options.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575320468240912093945
2024-10-03
2024-12-26
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Cupit-Link M.C. Kirkland J.L. Ness K.K. Armstrong G.T. Tchkonia T. LeBrasseur N.K. Armenian S.H. Ruddy K.J. Hashmi S.K. Biology of premature ageing in survivors of cancer. ESMO Open 2017 2 5 e000250 10.1136/esmoopen‑2017‑000250 29326844
    [Google Scholar]
  3. Maccormick R.E. Possible acceleration of aging by adjuvant chemotherapy: A cause of early onset frailty? Med. Hypotheses 2006 67 2 212 215 10.1016/j.mehy.2006.01.045 16546325
    [Google Scholar]
  4. Hogle W.P. The state of the art in radiation therapy. Seminars in oncology nursing. Elsevier 2006
    [Google Scholar]
  5. Voon S.H. Kiew L.V. Lee H.B. Lim S.H. Noordin M.I. Kamkaew A. Burgess K. Chung L.Y. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy. Small 2014 10 24 4993 5013 10.1002/smll.201401416 25164105
    [Google Scholar]
  6. Koo H. Lee H. Lee S. Min K.H. Kim M.S. Lee D.S. Choi Y. Kwon I.C. Kim K. Jeong S.Y. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem. Commun. (Camb.) 2010 46 31 5668 5670 10.1039/c0cc01413c 20623050
    [Google Scholar]
  7. Wang C. Cheng L. Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013 3 5 317 330 10.7150/thno.5284 23650479
    [Google Scholar]
  8. Agostinis P. Berg K. Cengel K.A. Foster T.H. Girotti A.W. Gollnick S.O. Hahn S.M. Hamblin M.R. Juzeniene A. Kessel D. Korbelik M. Moan J. Mroz P. Nowis D. Piette J. Wilson B.C. Golab J. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011 61 4 250 281 10.3322/caac.20114 21617154
    [Google Scholar]
  9. Josefsen L.B. Boyle R.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012 2 9 916 966 10.7150/thno.4571 23082103
    [Google Scholar]
  10. Lee H. Hong K.I. Jang W.D. Design and applications of molecular probes containing porphyrin derivatives. Coord. Chem. Rev. 2018 354 46 73 10.1016/j.ccr.2017.06.008
    [Google Scholar]
  11. Hiroto S. Miyake Y. Shinokubo H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 2017 117 4 2910 3043 10.1021/acs.chemrev.6b00427 27709907
    [Google Scholar]
  12. Tanaka T. Osuka A. Conjugated porphyrin arrays: synthesis, properties and applications for functional materials. Chem. Soc. Rev. 2015 44 4 943 969 10.1039/C3CS60443H 24480993
    [Google Scholar]
  13. Tian J. Huang B. Nawaz M.H. Zhang W. Recent advances of multi-dimensional porphyrin-based functional materials in photodynamic therapy. Coord. Chem. Rev. 2020 420 213410 10.1016/j.ccr.2020.213410
    [Google Scholar]
  14. Odin A.P. Antimutagenicity of the porphyrins and non-enzyme porphyrin-containing proteins. Mutat. Res. Rev. Mutat. Res. 1997 387 1 55 68 10.1016/S1383‑5742(97)00023‑9 9254893
    [Google Scholar]
  15. Diller K. Maurer R.J. Müller M. Reuter K. Interpretation of x-ray absorption spectroscopy in the presence of surface hybridization. J. Chem. Phys. 2017 146 21 214701 10.1063/1.4984072 28576083
    [Google Scholar]
  16. Nakamura Y. Aratani N. Osuka A. Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer. Chem. Soc. Rev. 2007 36 6 831 845 10.1039/b618854k 17534471
    [Google Scholar]
  17. Ng K.K. Lovell J.F. Vedadi A. Hajian T. Zheng G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano 2013 7 4 3484 3490 10.1021/nn400418y 23464857
    [Google Scholar]
  18. Shao S. Rajendiran V. Lovell J.F. Metalloporphyrin nanoparticles: Coordinating diverse theranostic functions. Coord. Chem. Rev. 2019 379 99 120 10.1016/j.ccr.2017.09.002 30559508
    [Google Scholar]
  19. Paolesse R. Nardis S. Monti D. Stefanelli M. Di Natale C. Porphyrinoids for chemical sensor applications. Chem. Rev. 2017 117 4 2517 2583 10.1021/acs.chemrev.6b00361 28222604
    [Google Scholar]
  20. Li L.L. Diau E.W.G. Porphyrin-sensitized solar cells. Chem. Soc. Rev. 2013 42 1 291 304 10.1039/C2CS35257E 23023240
    [Google Scholar]
  21. Mathew S. Yella A. Gao P. Humphry-Baker R. Curchod B.F.E. Ashari-Astani N. Tavernelli I. Rothlisberger U. Nazeeruddin M.K. Grätzel M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014 6 3 242 247 10.1038/nchem.1861 24557140
    [Google Scholar]
  22. Li S.H. Zhang C.R. Yuan L.H. Zhang M.L. Chen Y.H. Liu Z.J. Chen H-S. The role of electronic donor moieties in porphyrin dye sensitizers for solar cells: Electronic structures and excitation related properties. J. Renew. Sustain. Energy 2017 9 5 053505 10.1063/1.5001259
    [Google Scholar]
  23. Zhang W. Lai W. Cao R. Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin-and corrole-based systems. Chem. Rev. 2017 117 4 3717 3797 10.1021/acs.chemrev.6b00299 28222601
    [Google Scholar]
  24. Lovell J.F. Jin C.S. Huynh E. Jin H. Kim C. Rubinstein J.L. Chan W.C.W. Cao W. Wang L.V. Zheng G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011 10 4 324 332 10.1038/nmat2986 21423187
    [Google Scholar]
  25. Bhattacharya A. Raja S.O. Ahmed M.A. Bandyopadhyay S. Dasgupta A.K. Magnetic properties of photosynthetic materials-a nano scale study. arXiv:1706.08861 2017
    [Google Scholar]
  26. Singh S. Aggarwal A. Bhupathiraju N.V.S.D.K. Arianna G. Tiwari K. Drain C.M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem. Rev. 2015 115 18 10261 10306 10.1021/acs.chemrev.5b00244 26317756
    [Google Scholar]
  27. Wang K. Xu Y. Chen Z. Li H. Hu R. Qu J. Lu Y. Liu L. NIR-II light-activated two-photon squaric acid dye with Type I photodynamics for antitumor therapy. Nanophotonics 2022 11 22 5089 5100 10.1515/nanoph‑2022‑0482
    [Google Scholar]
  28. Ethirajan M. Chen Y. Joshi P. Pandey R.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011 40 1 340 362 10.1039/B915149B 20694259
    [Google Scholar]
  29. Li X. Zheng B.D. Peng X.H. Li S.Z. Ying J.W. Zhao Y. Huang J-D. Yoon J. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coord. Chem. Rev. 2019 379 147 160 10.1016/j.ccr.2017.08.003
    [Google Scholar]
  30. Tian J. Review of porphyrin-based photodynamic therapy materials. Coordin. Chem. Rev. 2020 420 213410 10.31219/osf.io/s4gx8
    [Google Scholar]
  31. Zhou Z. Song J. Nie L. Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem. Soc. Rev. 2016 45 23 6597 6626 10.1039/C6CS00271D 27722328
    [Google Scholar]
  32. Wang Y.Y. Liu Y.C. Sun H. Guo D.S. Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications. Coord. Chem. Rev. 2019 395 46 62 10.1016/j.ccr.2019.05.016
    [Google Scholar]
  33. DeRosa M. Crutchley R.J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002 233-234 351 371 10.1016/S0010‑8545(02)00034‑6
    [Google Scholar]
  34. Dolmans D.E.J.G.J. Fukumura D. Jain R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003 3 5 380 387 10.1038/nrc1071 12724736
    [Google Scholar]
  35. Alibasha A. Ghosh M. Recent Developments of Porphyrin Photosensitizers in Photodynamic Therapy. ChemRxiv. 2023
    [Google Scholar]
  36. Wu S. Butt H.J. Near‐infrared‐sensitive materials based on upconverting nanoparticles. Adv. Mater. 2016 28 6 1208 1226 10.1002/adma.201502843 26389516
    [Google Scholar]
  37. Wu W. Shao X. Zhao J. Wu M. Controllable photodynamic therapy implemented by regulating singlet oxygen efficiency. Adv. Sci. (Weinh.) 2017 4 7 1700113 10.1002/advs.201700113 28725533
    [Google Scholar]
  38. Ng A.C.H. Li X. Ng D.K.P. Synthesis and photophysical properties of nonaggregated phthalocyanines bearing dendritic substituents. Macromolecules 1999 32 16 5292 5298 10.1021/ma990367s
    [Google Scholar]
  39. Xu L. Zhang W. Cai H. Liu F. Wang Y. Gao Y. Zhang W. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles. J. Mater. Chem. B Mater. Biol. Med. 2015 3 37 7417 7426 10.1039/C5TB01363A 32262768
    [Google Scholar]
  40. Yu G. Yu S. Saha M.L. Zhou J. Cook T.R. Yung B.C. Chen J. Mao Z. Zhang F. Zhou Z. Liu Y. Shao L. Wang S. Gao C. Huang F. Stang P.J. Chen X. A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy. Nat. Commun. 2018 9 1 4335 10.1038/s41467‑018‑06574‑7 30337535
    [Google Scholar]
  41. Xue X. Huang Y. Bo R. Jia B. Wu H. Yuan Y. Wang Z. Ma Z. Jing D. Xu X. Yu W. Lin T. Li Y. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018 9 1 3653 10.1038/s41467‑018‑06093‑5 30194413
    [Google Scholar]
  42. Galluzzi L. Maiuri M.C. Vitale I. Zischka H. Castedo M. Zitvogel L. Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death Differ. 2007 14 7 1237 1243 10.1038/sj.cdd.4402148 17431418
    [Google Scholar]
  43. Lee X.C. Werner E. Falasca M. Molecular mechanism of autophagy and its regulation by cannabinoids in cancer. Cancers (Basel) 2021 13 6 1211 10.3390/cancers13061211 33802014
    [Google Scholar]
  44. Elmore S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  45. Glick D. Barth S. Macleod K.F. Autophagy: cellular and molecular mechanisms. J. Pathol. 2010 221 1 3 12 10.1002/path.2697 20225336
    [Google Scholar]
  46. Garg A.D. Bose M. Ahmed M.I. Bonass W.A. Wood S.R. In vitro studies on erythrosine-based photodynamic therapy of malignant and pre-malignant oral epithelial cells. PLoS One 2012 7 4 e34475 10.1371/journal.pone.0034475 22485174
    [Google Scholar]
  47. Moon Y.H. Park J.H. Kim S.A. Lee J.B. Ahn S.G. Yoon J.H. Anticancer effect of photodynamic therapy with hexenyl ester of 5‐aminolevulinic acid in oral squamous cell carcinoma. Head Neck 2010 32 9 1136 1142 10.1002/hed.21301 19953630
    [Google Scholar]
  48. Yoon J.H. Yoon H.E. Kim O. Kim S.K. Ahn S.G. Kang K.W. The enhanced anti‐cancer effect of hexenyl ester of 5‐aminolaevulinic acid photodynamic therapy in adriamycin‐resistant compared to non‐resistant breast cancer cells. Lasers Surg. Med. 2012 44 1 76 86 10.1002/lsm.21154 22246987
    [Google Scholar]
  49. Abdel Gaber S.A. Stepp H. Abdel Kader M.H. Lindén M. Mesoporous silica nanoparticles boost aggressive cancer response to hydrophilic chlorin e6-mediated photodynamic therapy. Cancer Nanotechnol. 2023 14 1 67 10.1186/s12645‑023‑00216‑4
    [Google Scholar]
  50. Chiaravalli G. Lanzani G. Sacco R. Salsa S. Nanoparticle-based organic polymer retinal prostheses: modeling, solution map and simulation. Mathematics in Engineering 2023 5 4 1 44 10.3934/mine.2023075
    [Google Scholar]
  51. Bian S. Zheng X. Liu W. Li J. Gao Z. Ren H. Zhang W. Lee C.S. Wang P. Pyrrolopyrrole aza-BODIPY-based NIR-II fluorophores for in vivo dynamic vascular dysfunction visualization of vascular-targeted photodynamic therapy. Biomaterials 2023 298 122130 10.1016/j.biomaterials.2023.122130 37146363
    [Google Scholar]
  52. Liang Y. Zhang M. Zhang Y. Zhang M. Ultrasound Sonosensitizers for Tumor Sonodynamic Therapy and Imaging: A New Direction with Clinical Translation. Molecules 2023 28 18 6484 10.3390/molecules28186484 37764260
    [Google Scholar]
  53. Oloo S.O. Smith K.M. Vicente M.G.H. Multi-Functional Boron-Delivery Agents for Boron Neutron Capture Therapy of Cancers. Cancers (Basel) 2023 15 13 3277 10.3390/cancers15133277 37444386
    [Google Scholar]
  54. Hsu M.A. Okamura S.M. De Magalhaes Filho C.D. Bergeron D.M. Rodriguez A. West M. Yadav D. Heim R. Fong J.J. Garcia-Guzman M. Cancer-targeted photoimmunotherapy induces antitumor immunity and can be augmented by anti-PD-1 therapy for durable anticancer responses in an immunologically active murine tumor model. Cancer Immunol. Immunother. 2023 72 1 151 168 10.1007/s00262‑022‑03239‑9 35776159
    [Google Scholar]
  55. Puttaswamy N.Y. Mahanta P. Sarma P. Medhi C. Kaid S.M.A. Kullaiah B. Basumatary D. Manjasetty B.A. Structure‐based biological investigations on ruthenium complexes containing 2,2′‐bipyridine ligands and their applications in photodynamic therapy as a potential photosensitizer. Chem. Biol. Drug Des. 2023 102 6 1506 1520 10.1111/cbdd.14341 37722881
    [Google Scholar]
  56. Sasaki M. Tanaka M. Kojima Y. Nishie H. Shimura T. Kubota E. Kataoka H. Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody. Mol. Ther. Oncolytics 2023 28 118 131 10.1016/j.omto.2022.12.009 36726602
    [Google Scholar]
  57. Kohn J.T. Gildemeister N. Grimme S. Fazzi D. Hansen A. Efficient calculation of electronic coupling integrals with the dimer projection method via a density matrix tight-binding potential. J. Chem. Phys. 2023 159 14 144106 10.1063/5.0167484 37818996
    [Google Scholar]
  58. Xian X. Gong F. Chen M. Zheng J. Tian J. Fu S. Zhou G. Zhang W. A near-infrared bacteriochlorin nanomedicine for enhanced photodynamic therapy. Eur. Polym. J. 2023 197 112328 10.1016/j.eurpolymj.2023.112328
    [Google Scholar]
  59. Mariano G.E. Soares M.E. Dias D.M. Carneiro G. Galo R. Singlet oxygen release due to different concentrations of photosensitizer. Acta Scientiarum Heal. Sci. 2023 45 e61264 10.4025/actascihealthsci.v45i1.61264
    [Google Scholar]
  60. Halašková M. Study of original phthalocyanine photosensitizers at the cellular level. Thesis, Charles University, Faculty of Pharmacy in Hradec Králové, 2023.
    [Google Scholar]
  61. Nompumelelo Simelane N.W. Kruger C.A. Abrahamse H. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo. RSC Advances 2020 10 68 41560 41576 10.1039/D0RA08617G 35516575
    [Google Scholar]
  62. Josefsen L.B. Boyle R.W. Photodynamic therapy and the development of metal-based photosensitisers. Metal-based drugs 2008 2008 276109 10.1155/2008/276109
    [Google Scholar]
  63. Friedberg J.S. Mick R. Stevenson J.P. Zhu T. Busch T.M. Shin D. Smith D. Culligan M. Dimofte A. Glatstein E. Hahn S.M. Phase II trial of pleural photodynamic therapy and surgery for patients with non-small-cell lung cancer with pleural spread. J. Clin. Oncol. 2004 22 11 2192 2201 10.1200/JCO.2004.07.097 15169808
    [Google Scholar]
  64. Hopper C. Kübler A. Lewis H. Tan I.B. Putnam G. Group F.S. mTHPC‐mediated photodynamic therapy for early oral squamous cell carcinoma. Int. J. Cancer 2004 111 1 138 146 10.1002/ijc.20209 15185355
    [Google Scholar]
  65. Wainwright M. Crossley K.B. Methylene Blue--a therapeutic dye for all seasons? J. Chemother. 2002 14 5 431 443 10.1179/joc.2002.14.5.431 12462423
    [Google Scholar]
  66. Tseng S.P. Hung W.C. Chen H.J. Lin Y.T. Jiang H.S. Chiu H.C. Hsueh P.R. Teng L.J. Tsai J.C. Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates. J. Microbiol. Immunol. Infect. 2017 50 1 46 54 10.1016/j.jmii.2014.12.007 25670474
    [Google Scholar]
  67. Tardivo J.P. Adami F. Correa J.A. Pinhal M.A.S. Baptista M.S. A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients. Photodiagn. Photodyn. Ther. 2014 11 3 342 350 10.1016/j.pdpdt.2014.04.007 24814697
    [Google Scholar]
  68. Graciano T.B. Coutinho T.S. Cressoni C.B. Freitas C.P. Pierre M.B.R. de Lima Pereira S.A. Shimano M.M. Cristina da Cunha Frange R. Garcia M.T.J. Using chitosan gels as a toluidine blue O delivery system for photodynamic therapy of buccal cancer: In vitro and in vivo studies. Photodiagn. Photodyn. Ther. 2015 12 1 98 107 10.1016/j.pdpdt.2014.11.003 25463317
    [Google Scholar]
  69. Boens N. Leen V. Dehaen W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 2012 41 3 1130 1172 10.1039/C1CS15132K 21796324
    [Google Scholar]
  70. Kubrak T. Karakuła M. Czop M. Kawczyk-Krupka A. Aebisher D. Advances in management of Bladder cancer—the role of photodynamic therapy. Molecules 2022 27 3 731 10.3390/molecules27030731 35163996
    [Google Scholar]
  71. Simões J.C.S. Sarpaki S. Papadimitroulas P. Therrien B. Loudos G. Conjugated photosensitizers for imaging and PDT in cancer research. J. Med. Chem. 2020 63 23 14119 14150 10.1021/acs.jmedchem.0c00047 32990442
    [Google Scholar]
  72. Yao Q. Fan J. Long S. Zhao X. Li H. Du J. Shao K. Peng X. The concept and examples of type-III photosensitizers for cancer photodynamic therapy. Chem 2022 8 1 197 209 10.1016/j.chempr.2021.10.006
    [Google Scholar]
  73. Jiang M. Wu J. Liu W. Ren H. Zhang W. Lee C.S. Wang P. Self‐assembly of Amphiphilic Porphyrins To Construct Nanoparticles for Highly Efficient Photodynamic Therapy. Chemistry 2021 27 43 11195 11204 10.1002/chem.202101199 33960049
    [Google Scholar]
  74. Mfouo-Tynga I.S. Dias L.D. Inada N.M. Kurachi C. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagn. Photodyn. Ther. 2021 34 102091 10.1016/j.pdpdt.2020.102091 33453423
    [Google Scholar]
  75. Zheng B.D. Ye J. Zhang X.Q. Zhang N. Xiao M.T. Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy. Coord. Chem. Rev. 2021 447 214155 10.1016/j.ccr.2021.214155
    [Google Scholar]
  76. Balalaeva I.V. Mishchenko T.A. Turubanova V.D. Peskova N.N. Shilyagina N.Y. Plekhanov V.I. Lermontova S.A. Klapshina L.G. Vedunova M.V. Krysko D.V. Cyanoarylporphyrazines with High Viscosity Sensitivity: A Step towards Dosimetry-Assisted Photodynamic Cancer Treatment. Molecules 2021 26 19 5816 10.3390/molecules26195816 34641360
    [Google Scholar]
  77. Xue E.Y. Shi W.J. Fong W.P. Ng D.K.P. Targeted delivery and site-specific activation of β-cyclodextrin-conjugated photosensitizers for photodynamic therapy through a supramolecular bio-orthogonal approach. J. Med. Chem. 2021 64 20 15461 15476 10.1021/acs.jmedchem.1c01505 34662121
    [Google Scholar]
  78. Huang K. Zhang H. Yan M. Xue J. Chen J. A novel zinc phthalocyanine-indometacin photosensitizer with “Three-in-one” cyclooxygenase-2-driven dual targeting and aggregation inhibition for high-efficient anticancer therapy. Dyes Pigments 2022 198 109997 10.1016/j.dyepig.2021.109997
    [Google Scholar]
  79. Lee D. Kwon S. Jang S. Park E. Lee Y. Koo H. Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles. Bioact. Mater. 2022 8 20 34 10.1016/j.bioactmat.2021.06.019 34541384
    [Google Scholar]
  80. Pan J. Du J. Hu Q. Liu Y. Zhang X. Li X. Zhou D. Yao Q. Long S. Fan J. Peng X. Photo‐Induced Electron Transfer‐Triggered Structure Deformation Promoting Near‐Infrared Photothermal Conversion for Tumor Therapy. Adv. Healthc. Mater. 2023 12 27 2301091 10.1002/adhm.202301091 37321560
    [Google Scholar]
  81. Pal L.B. Bule P. Khan W. Chella N. An Overview of the Development and Preclinical Evaluation of Antibody–Drug Conjugates for Non-Oncological Applications. Pharmaceutics 2023 15 7 1807 10.3390/pharmaceutics15071807 37513995
    [Google Scholar]
  82. Domínguez-Llamas S. Caro-Magdaleno M. Mataix-Albert B. Avilés-Prieto J. Romero-Barranca I. Rodríguez-de-la-Rúa E. Adverse events of antibody–drug conjugates on the ocular surface in cancer therapy. Clin. Transl. Oncol. 2023 25 11 3086 3100 10.1007/s12094‑023‑03261‑y 37454027
    [Google Scholar]
  83. Subhan M.A. Torchilin V.P. Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics 2023 15 4 1242 10.3390/pharmaceutics15041242 37111727
    [Google Scholar]
  84. Alavi M. Yarani R. ROS and RNS modulation: the main antimicrobial, anticancer, antidiabetic, and antineurodegenerative mechanisms of metal or metal oxide nanoparticles. Nano Micro Biosystems. 2023 2 1 22 30
    [Google Scholar]
  85. Li Y. Zhang R. Wan Q. Hu R. Ma Y. Wang Z. Hou J. Zhang W. Tang B.Z. Trojan Horse‐Like Nano‐AIE Aggregates Based on Homologous Targeting Strategy and Their Photodynamic Therapy in Anticancer Application. Adv. Sci. (Weinh.) 2021 8 23 2102561 10.1002/advs.202102561 34672122
    [Google Scholar]
  86. Sarbadhikary P. George B.P. Abrahamse H. Recent advances in photosensitizers as multifunctional theranostic agents for imaging-guided photodynamic therapy of cancer. Theranostics 2021 11 18 9054 9088 10.7150/thno.62479 34522227
    [Google Scholar]
  87. Doričić K. Synthesis of 5-(4-(cis-9,10-epoxyoctadecanamido)phenyl)-10,15,20-tris(N-methylpyridinium-3-yl)porphyrin trichloride. Master's thesis, University of Rijeka, 2023.
    [Google Scholar]
  88. Shinde S.U. Gidde N.D. Shinde P.P. Kadam A.B. An Overview of Nanoparticles: Current Scenario. Res. J. Pharmac. Dosage Form. Technol. 2021 13 3 239 246
    [Google Scholar]
  89. Kabiri F. Mirfakhraee S. Ardakani Y.H. Dinarvand R. Hollow mesoporous silica nanoparticles for co-delivery of hydrophobic and hydrophilic molecules: mechanism of drug loading and release. J. Nanopart. Res. 2021 23 10 226 10.1007/s11051‑021‑05332‑z
    [Google Scholar]
  90. Shilyagina N.Y. Shestakova L.N. Peskova N.N. Lermontova S.A. Lyubova T.S. Klapshina L.G. Balalaeva I.V. Cyanoarylporphyrazine dyes: multimodal compounds for personalised photodynamic therapy. Biophys. Rev. 2023 15 5 971 982 10.1007/s12551‑023‑01134‑w 37975009
    [Google Scholar]
  91. Otvagin V.F. Krylova L.V. Peskova N.N. Kuzmina N.S. Fedotova E.A. Nyuchev A.V. A first-in-class β-glucuronidase responsive conjugate for selective dual targeted and photodynamic therapy of bladder Cancer. ChemRxiv 2023 10.26434/chemrxiv‑2023‑fq4hv
    [Google Scholar]
  92. Ghoochani S.H. Hosseini H.A. Sabouri Z. Soheilifar M.H. Neghab H.K. Hashemzadeh A. Velayati M. Darroudi M. Zn(II) porphyrin–encapsulated MIL-101 for photodynamic therapy of breast cancer cells. Lasers Med. Sci. 2023 38 1 151 10.1007/s10103‑023‑03813‑2 37378703
    [Google Scholar]
  93. Prieto-Montero R. Arbeloa T. Martínez-Martínez V. Photosensitizer‐Mesoporous Silica Nanoparticles Combination for Enhanced Photodynamic Therapy †. Photochem. Photobiol. 2023 99 3 882 900 10.1111/php.13802 36916066
    [Google Scholar]
  94. Xiong M. Ghosh M.K. Lu L. Liu X.H. Muddassir M. Ghorai T.K. Synthesis and characterized three Zn(II)-based mixed geometry coordination polymers and photocatalytic activity against dyes. Polyhedron 2023 246 116693 10.1016/j.poly.2023.116693
    [Google Scholar]
  95. Najafi M. Abednatanzi S. Yousefi A. Ghaedi M. Photocatalytic Activity of Supported Metal Nanoparticles and Single Atoms. Chemistry 2021 27 72 17999 18014 10.1002/chem.202102877 34672043
    [Google Scholar]
  96. Huang X. Sun X. Wang W. Shen Q. Shen Q. Tang X. Shao J. Nanoscale metal–organic frameworks for tumor phototherapy. J. Mater. Chem. B Mater. Biol. Med. 2021 9 18 3756 3777 10.1039/D1TB00349F 33870980
    [Google Scholar]
  97. Castano A.P. Demidova T.N. Hamblin M.R. Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 2004 1 4 279 293 10.1016/S1572‑1000(05)00007‑4 25048432
    [Google Scholar]
  98. Karges J. Heinemann F. Jakubaszek M. Maschietto F. Subecz C. Dotou M. Vinck R. Blacque O. Tharaud M. Goud B. Viñuelas Zahínos E. Spingler B. Ciofini I. Gasser G. Rationally designed long-wavelength absorbing Ru (II) polypyridyl complexes as photosensitizers for photodynamic therapy. J. Am. Chem. Soc. 2020 142 14 6578 6587 10.1021/jacs.9b13620 32172564
    [Google Scholar]
  99. Master A. Livingston M. Sen Gupta A. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release 2013 168 1 88 102 10.1016/j.jconrel.2013.02.020 23474028
    [Google Scholar]
  100. Ogawara K. Higaki K. Nanoparticle-based photodynamic therapy: current status and future application to improve outcomes of cancer treatment. Chem. Pharm. Bull. (Tokyo) 2017 65 7 637 641 10.1248/cpb.c17‑00063 28674336
    [Google Scholar]
  101. Canyurt M. Efforts towards synthesis of hydrogen sulfide activated bodipy based pdt agent. Thesis, Middle East Technical University, 2022.
    [Google Scholar]
  102. Leporatti S. Thinking about Enhanced Permeability and Retention Effect (EPR). MDPI 2022 1259
    [Google Scholar]
  103. Wakiyama H. Furusawa A. Okada R. Inagaki F. Kato T. Furumoto H. Fukushima H. Okuyama S. Choyke P.L. Kobayashi H. Opening up new VISTAs: V-domain immunoglobulin suppressor of T cell activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers. Cancer Immunol. Immunother. 2022 71 12 2869 2879 10.1007/s00262‑022‑03205‑5 35445836
    [Google Scholar]
  104. Xu Y. Tan Y. Ma X. Jin X. Tian Y. Li M. Photodynamic Therapy with Tumor Cell Discrimination through RNA-Targeting Ability of Photosensitizer. Molecules 2021 26 19 5990 10.3390/molecules26195990 34641533
    [Google Scholar]
  105. Correia J.H. Rodrigues J.A. Pimenta S. Dong T. Yang Z. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics 2021 13 9 1332 10.3390/pharmaceutics13091332 34575408
    [Google Scholar]
  106. Wang X. Luo D. Basilion J.P. Photodynamic therapy: targeting cancer biomarkers for the treatment of cancers. Cancers (Basel) 2021 13 12 2992 10.3390/cancers13122992 34203805
    [Google Scholar]
  107. Sobhani N. Samadani A.A. Implications of photodynamic cancer therapy: an overview of PDT mechanisms basically and practically. J. Egypt. Natl. Canc. Inst. 2021 33 1 34 10.1186/s43046‑021‑00093‑1 34778919
    [Google Scholar]
  108. Gunaydin G. Gedik M.E. Ayan S. Photodynamic therapy—current limitations and novel approaches. Front Chem. 2021 9 691697 10.3389/fchem.2021.691697 34178948
    [Google Scholar]
  109. Vyas D. Patel M. Wairkar S. Strategies for active tumor targeting-an update. Eur. J. Pharmacol. 2022 915 174512 10.1016/j.ejphar.2021.174512 34555395
    [Google Scholar]
  110. Pant K. Neuber C. Zarschler K. Wodtke J. Meister S. Haag R. Pietzsch J. Stephan H. Active targeting of dendritic polyglycerols for diagnostic cancer imaging. Small 2020 16 7 1905013 10.1002/smll.201905013 31880080
    [Google Scholar]
  111. Peng Y. Tao H. Gao Y. Yang Y. Chen Z. Review and Prospect of Tissue-agnostic Targeted Strategies in Anticancer Therapies. Curr. Top. Med. Chem. 2021 21 5 404 425 10.2174/1568026620666200616143247 32543358
    [Google Scholar]
  112. Thanki K. Kushwah V. Jain S. Recent advances in tumor targeting approaches. Targeted drug delivery: concepts and design. Springer 2015 10.1007/978‑3‑319‑11355‑5_2
    [Google Scholar]
  113. Hodgkinson N. Kruger C.A. Abrahamse H. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells. Tumour Biol. 2017 39 10 10.1177/1010428317734691 28990490
    [Google Scholar]
  114. Sakurai Y. Kajimoto K. Hatakeyama H. Harashima H. Advances in an active and passive targeting to tumor and adipose tissues. Expert Opin. Drug Deliv. 2015 12 1 41 52 10.1517/17425247.2015.955847 25376864
    [Google Scholar]
  115. Dong W. Li K. Wang S. Qiu L. Liu Q. Xie M. Lin J. Targeted photodynamic therapy (PDT) of lung cancer with biotinylated silicon (IV) phthalocyanine. Curr. Pharm. Biotechnol. 2021 22 3 414 422 10.2174/1389201021666200510001627 32386488
    [Google Scholar]
  116. Adhikarla V. Awuah D. Brummer A.B. Caserta E. Krishnan A. Pichiorri F. Minnix M. Shively J.E. Wong J.Y.C. Wang X. Rockne R.C. A mathematical modeling approach for targeted radionuclide and chimeric antigen receptor t cell combination therapy. Cancers (Basel) 2021 13 20 5171 10.3390/cancers13205171 34680320
    [Google Scholar]
  117. Starkey J.R. Pascucci E.M. Drobizhev M.A. Elliott A. Rebane A.K. Vascular targeting to the SST2 receptor improves the therapeutic response to near-IR two-photon activated PDT for deep-tissue cancer treatment. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 10 4594 4603 10.1016/j.bbagen.2013.05.043 23747302
    [Google Scholar]
  118. Ko Y.J. Kim W.J. Kim K. Kwon I.C. Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J. Control. Release 2019 305 1 17 10.1016/j.jconrel.2019.04.030 31054991
    [Google Scholar]
  119. Zou L. Wang H. He B. Zeng L. Tan T. Cao H. He X. Zhang Z. Guo S. Li Y. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016 6 6 762 772 10.7150/thno.14988 27162548
    [Google Scholar]
  120. Tian J. Zhang W. Synthesis, self-assembly and applications of functional polymers based on porphyrins. Prog. Polym. Sci. 2019 95 65 117 10.1016/j.progpolymsci.2019.05.002
    [Google Scholar]
  121. Braunecker W.A. Matyjaszewski K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007 32 1 93 146 10.1016/j.progpolymsci.2006.11.002
    [Google Scholar]
  122. Barbey R. Lavanant L. Paripovic D. Schüwer N. Sugnaux C. Tugulu S. Klok H.A. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem. Rev. 2009 109 11 5437 5527 10.1021/cr900045a 19845393
    [Google Scholar]
  123. Li Z.Y. Wang H.Y. Li C. Zhang X.L. Wu X.J. Qin S.Y. Zhang X-Z. Zhuo R-X. Porphyrin‐functionalized amphiphilic diblock copolypeptides for photodynamic therapy. J. Polym. Sci. A Polym. Chem. 2011 49 1 286 292 10.1002/pola.24451
    [Google Scholar]
  124. Ibarra L.E. Porcal G.V. Macor L.P. Ponzio R.A. Spada R.M. Lorente C. Chesta C.A. Rivarola V.A. Palacios R.E. Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells. Nanomedicine (Lond.) 2018 13 6 605 624 10.2217/nnm‑2017‑0292 29376764
    [Google Scholar]
  125. Tian J. Zhang W. Construction and applications of well-defined porphyrin-containing polymers. Gaofenzi Xuebao 2019 50 653 670 [in Chinese]
    [Google Scholar]
  126. Han K. Lei Q. Wang S.B. Hu J.J. Qiu W.X. Zhu J.Y. Yin W-N. Luo X. Zhang X-Z. Dual‐stage‐light‐guided tumor inhibition by mitochondria‐targeted photodynamic therapy. Adv. Funct. Mater. 2015 25 20 2961 2971 10.1002/adfm.201500590
    [Google Scholar]
  127. Tian J. Xu L. Xue Y. Jiang X. Zhang W. Enhancing photochemical internalization of DOX through a porphyrin-based amphiphilic block copolymer. Biomacromolecules 2017 18 12 3992 4001 10.1021/acs.biomac.7b01037 29035561
    [Google Scholar]
  128. Huang B. Tian J. Jiang D. Gao Y. Zhang W. NIR-activated “OFF/ON” Photodynamic therapy by a hybrid nanoplatform with upper critical solution temperature block copolymers and gold nanorods. Biomacromolecules 2019 20 10 3873 3883 10.1021/acs.biomac.9b00963 31490661
    [Google Scholar]
  129. Lehn J.M. Supramolecular chemistry Vch, Weinheim 1995
    [Google Scholar]
  130. Lehn J.M. Supramolecular chemistry: from molecular information towards self-organization and complex matter. Rep. Prog. Phys. 2004 67 3 249 265 10.1088/0034‑4885/67/3/R02
    [Google Scholar]
  131. Alva-Ensastegui J.C. Ramírez-Silva M.T. Study of the interaction between polyphenol, quercetin and three micelles with different electric charges in acidic and aqueous media. J. Indian Chem. Soc. 2023 100 9 101063 10.1016/j.jics.2023.101063
    [Google Scholar]
  132. Deva V. Mishra R.K. Sharma M. Yadav G. Jahan I. Pandey V. Nanoparticle-mediated Delivery of Anticancer Drugs for Brain Metastases.
    [Google Scholar]
  133. Guo D.S. Liu Y. Calixarene-based supramolecular polymerization in solution. Chem. Soc. Rev. 2012 41 18 5907 5921 10.1039/c2cs35075k 22617955
    [Google Scholar]
  134. Aida T. Meijer E.W. Stupp S.I. Functional supramolecular polymers. Science 2012 335 6070 813 817 10.1126/science.1205962 22344437
    [Google Scholar]
  135. Gu Z.Y. Guo D.S. Sun M. Liu Y. Effective enlargement of fluorescence resonance energy transfer of poly-porphyrin mediated by β-cyclodextrin dimers. J. Org. Chem. 2010 75 11 3600 3607 10.1021/jo100351f 20443534
    [Google Scholar]
  136. Zhang J. Zheng X. Hu X. Xie Z. GSH-triggered size increase of porphyrin-containing nanosystems for enhanced retention and photodynamic activity. J. Mater. Chem. B Mater. Biol. Med. 2017 5 23 4470 4477 10.1039/C7TB00063D 32263974
    [Google Scholar]
  137. Swiech O. Chmurski K. Bilewicz R. Molecular interactions of β-cyclodextrins with monolayers containing adamantane and anthraquinone guest groups. Supramol. Chem. 2010 22 7-8 461 466 10.1080/10610278.2010.486138
    [Google Scholar]
  138. Dai Y. Li Q. Zhang S. Shi S. Li Y. Zhao X. Zhou L. Wang X. Zhu Y. Li W. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2021 64 102650 10.1016/j.jddst.2021.102650
    [Google Scholar]
  139. Fathalla M. Neuberger A. Li S.C. Schmehl R. Diebold U. Jayawickramarajah J. Straightforward self-assembly of porphyrin nanowires in water: harnessing adamantane/β-cyclodextrin interactions. J. Am. Chem. Soc. 2010 132 29 9966 9967 10.1021/ja1030722 20597548
    [Google Scholar]
  140. Zhang Y. Xiang W. Yang R. Liu F. Li K. Highly selective sensing of lead ion based on α-, β-, γ-, and δ-tetrakis(3,5-dibromo-2-hydroxylphenyl)porphyrin/β-CD inclusion complex. J. Photochem. Photobiol. Chem. 2005 173 3 264 270 10.1016/j.jphotochem.2005.04.005
    [Google Scholar]
  141. Zhao Y. Deng Y. Tang Z. Jin Q. Ji J. Zwitterionic reduction-activated supramolecular prodrug nanocarriers for photodynamic ablation of cancer cells. Langmuir 2019 35 5 1919 1926 10.1021/acs.langmuir.8b02745 30204452
    [Google Scholar]
  142. Özdemir Z. Yang M. Kim G. Bildziukevich U. Šaman D. Li X. Yoon J. Wimmer Z. Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemo- and photodynamic therapy. Dyes Pigments 2021 190 109307 10.1016/j.dyepig.2021.109307
    [Google Scholar]
  143. Liu X. Shao W. Zheng Y. Yao C. Peng L. Zhang D. Hu X.Y. Wang L. GSH-Responsive supramolecular nanoparticles constructed by β- d -galactose-modified pillar[5]arene and camptothecin prodrug for targeted anticancer drug delivery. Chem. Commun. (Camb.) 2017 53 61 8596 8599 10.1039/C7CC04932C 28718478
    [Google Scholar]
  144. Xu X.D. Zhao L. Qu Q. Wang J.G. Shi H. Zhao Y. Imaging-guided drug release from glutathione-responsive supramolecular porphysome nanovesicles. ACS Appl. Mater. Interfaces 2015 7 31 17371 17380 10.1021/acsami.5b06026 26186168
    [Google Scholar]
  145. Magna G. Monti D. Di Natale C. Paolesse R. Stefanelli M. The assembly of porphyrin systems in well-defined nanostructures: An update. Molecules 2019 24 23 4307 10.3390/molecules24234307 31779097
    [Google Scholar]
  146. McCann P. Stafinski T. Wong C. Menon D. The safety and effectiveness of endoscopic and non-endoscopic approaches to the management of early esophageal cancer: A systematic review. Cancer Treat. Rev. 2011 37 1 11 62 10.1016/j.ctrv.2010.04.006 20570442
    [Google Scholar]
  147. Berg K. Resistance mechanisms in photodynamic therapy. Photochem. Photobiol. Sci. 2015 14 8 1376 1377 10.1039/c5pp90026c 26212047
    [Google Scholar]
  148. Rodrigues J.A. Correia J.H. Photodynamic Therapy for Colorectal Cancer: An Update and a Look to the Future. Int. J. Mol. Sci. 2023 24 15 12204 10.3390/ijms241512204 37569580
    [Google Scholar]
  149. Kumar A. Pecquenard F. Baydoun M. Quilbé A. Moralès O. Leroux B. Aoudjehane L. Conti F. Boleslawski E. Delhem N. An Efficient 5-Aminolevulinic Acid Photodynamic Therapy Treatment for Human Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023 24 13 10426 10.3390/ijms241310426 37445603
    [Google Scholar]
  150. Zeng S. Chen C. Zhang L. Liu X. Qian M. Cui H. Wang J. Chen Q. Peng X. Activation of pyroptosis by specific organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy. Bioact. Mater. 2023 25 580 593 10.1016/j.bioactmat.2022.07.016 37056275
    [Google Scholar]
  151. Casas A. Perotti C. Di Venosa G. Batlle A. Mechanisms of Resistance to Photodynamic Therapy: An Update. Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics Springer 2015 10.1007/978‑3‑319‑12730‑9_2
    [Google Scholar]
  152. Hamblin M.R. Drug efflux pumps in photodynamic therapy. Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy. Elsevier 2020 251 276
    [Google Scholar]
  153. Casas A. Di Venosa G. Hasan T. Batlle A. Mechanisms of resistance to photodynamic therapy. Curr. Med. Chem. 2011 18 16 2486 2515 10.2174/092986711795843272 21568910
    [Google Scholar]
  154. Di Venosa G. Perotti C. Batlle A. Casas A. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochem. Photobiol. Sci. 2015 14 8 1451 1464 10.1039/c4pp00445k 25832889
    [Google Scholar]
  155. Peskova N.N. Brilkina A.A. Gorokhova A.A. Shilyagina N.Y. Kutova O.M. Nerush A.S. Orlova A.G. Klapshina L.G. Vodeneev V.V. Balalaeva I.V. The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria. J. Photochem. Photobiol. B 2021 219 112208 10.1016/j.jphotobiol.2021.112208 33989888
    [Google Scholar]
  156. Jiang Q. Pan M. Hu J. Sun J. Fan L. Zou Z. Wei J. Yang X. Liu X. Regulation of redox balance using a biocompatible nanoplatform enhances phototherapy efficacy and suppresses tumor metastasis. Chem. Sci. (Camb.) 2021 12 1 148 157 10.1039/D0SC04983B 34163586
    [Google Scholar]
  157. Klausen M. Ucuncu M. Bradley M. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy. Molecules 2020 25 22 5239 10.3390/molecules25225239 33182751
    [Google Scholar]
  158. Li M. Li G. Wang H. Yuan L. The chemodynamic antibacterial effect of MnOX nanosheet decorated silicon nanowire arrays. Materials Advances 2022 3 1 526 533 10.1039/D1MA00794G
    [Google Scholar]
  159. Jung A.C. Moinard-Butot F. Thibaudeau C. Gasser G. Gaiddon C. Antitumor immune response triggered by metal-based photosensitizers for photodynamic therapy: where are we? Pharmaceutics 2021 13 11 1788 10.3390/pharmaceutics13111788 34834202
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575320468240912093945
Loading
/content/journals/mrmc/10.2174/0113895575320468240912093945
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: photodynamic therapy (PDT) ; apoptosis ; ROS ; porphyrin ; photo-drugs ; Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test