Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Photodynamic Therapy (PDT) has emerged as a highly efficient and non-invasive cancer treatment, which is crucial considering the significant global mortality rates associated with cancer. The effectiveness of PDT primarily relies on the quality of the photosensitizers employed. When exposed to appropriate light irradiation, these photosensitizers absorb energy and transition to an excited state, eventually transferring energy to nearby molecules and generating Reactive Oxygen Species (ROS), including singlet oxygen [1O]. The ability to absorb light in visible and near-infrared wavelengths makes porphyrins and derivatives useful photosensitizers for PDT. Chemically, Porphyrins, composed of tetra-pyrrole structures connected by four methylene groups, represent the typical photosensitizers. The limited water solubility and bio-stability of porphyrin photosensitizers and their non-specific tumor-targeting properties hinder PDT effectiveness and clinical applications. Therefore, a wide range of modification and functionalization techniques have been used to maximize PDT efficiency and develop multidimensional porphyrin-based functional materials. Recent progress in porphyrin-based functional materials has been investigated in this review paper, focusing on two main aspects including the development of porphyrinic amphiphiles that improve water solubility and biocompatibility, and the design of porphyrin-based polymers, including block copolymers with covalent bonds and supramolecular polymers with noncovalent bonds, which provide versatile platforms for PDT applications. The development of porphyrin-based functional materials will allow researchers to significantly expand PDT applications for cancer therapy by opening up new opportunities. With these innovations, porphyrins will overcome their limitations and push PDT to the forefront of cancer treatment options.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575320468240912093945
2024-10-03
2025-03-07
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. Cupit-LinkM.C. KirklandJ.L. NessK.K. ArmstrongG.T. TchkoniaT. LeBrasseurN.K. ArmenianS.H. RuddyK.J. HashmiS.K. Biology of premature ageing in survivors of cancer.ESMO Open201725e00025010.1136/esmoopen‑2017‑000250 29326844
    [Google Scholar]
  3. MaccormickR.E. Possible acceleration of aging by adjuvant chemotherapy: A cause of early onset frailty?Med. Hypotheses200667221221510.1016/j.mehy.2006.01.045 16546325
    [Google Scholar]
  4. Hogle, W.P., Ed.; The state of the art in radiation therapy. Seminars in oncology nursingElsevier, 2006, 22(4), 212-220.
    [Google Scholar]
  5. VoonS.H. KiewL.V. LeeH.B. LimS.H. NoordinM.I. KamkaewA. BurgessK. ChungL.Y. In vivo studies of nanostructure-based photosensitizers for photodynamic cancer therapy.Small201410244993501310.1002/smll.201401416 25164105
    [Google Scholar]
  6. KooH. LeeH. LeeS. MinK.H. KimM.S. LeeD.S. ChoiY. KwonI.C. KimK. JeongS.Y. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles.Chem. Commun.201046315668567010.1039/c0cc01413c 20623050
    [Google Scholar]
  7. WangY. ZhaiW. ChengS. LiJ. ZhangH. Surface-functionalized design of blood-contacting biomaterials for preventing coagulation and promoting hemostasis.Friction20231181371139410.1007/s40544‑022‑0710‑x
    [Google Scholar]
  8. WangY. ZhaiW. YangL. ChengS. CuiW. LiJ. Establishments and evaluations of post‐operative adhesion animal models.Adv. Ther.202364220029710.1002/adtp.202200297
    [Google Scholar]
  9. JosefsenL.B. BoyleR.W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics.Theranostics20122991696610.7150/thno.4571 23082103
    [Google Scholar]
  10. ZhuangJ. PanH. FengW. Ultrasensitive photoelectric immunoassay platform utilizing biofunctional 2D vertical SnS2/Ag2 S heterojunction.ACS Appl. Electron. Mater.202468acsaelm.4c0094110.1021/acsaelm.4c00941
    [Google Scholar]
  11. GuoP. ZengM. LiuM. ZhangY. JiaJ. ZhangZ. LiangS. ZhengX. FengW. Isolation of Calenduloside E from Achyranthes bidentata Blume and its effects on LPS/D-GalN-induced acute liver injury in mice by regulating the AMPK-SIRT3 signaling pathway.Phytomedicine202412515535310.1016/j.phymed.2024.155353 38241918
    [Google Scholar]
  12. TanakaT. OsukaA. Conjugated porphyrin arrays: Synthesis, properties and applications for functional materials.Chem. Soc. Rev.201544494396910.1039/C3CS60443H 24480993
    [Google Scholar]
  13. LouJ.S. ZhaoL.P. HuangZ.H. ChenX.Y. XuJ.T. TaiW.C.S. TsimK.W.K. ChenY.T. XieT. Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer.Phytomedicine20218015337010.1016/j.phymed.2020.153370 33113504
    [Google Scholar]
  14. OdinA.P. Antimutagenicity of the porphyrins and non-enzyme porphyrin-containing proteins.Mutat. Res. Rev. Mutat. Res.19973871556810.1016/S1383‑5742(97)00023‑9 9254893
    [Google Scholar]
  15. LiuK. JiangZ. LalancetteR.A. TangX. JäkleF. Near-infrared-absorbing b–n lewis pair-functionalized anthracenes: Electronic structure tuning, conformational isomerism, and applications in photothermal cancer therapy.J. Am. Chem. Soc.202214441189081891710.1021/jacs.2c06538 36194812
    [Google Scholar]
  16. NakamuraY. ArataniN. OsukaA. Cyclic porphyrin arrays as artificial photosynthetic antenna: Synthesis and excitation energy transfer.Chem. Soc. Rev.200736683184510.1039/b618854k 17534471
    [Google Scholar]
  17. JiangZ. HanX. ZhaoC. WangS. TangX. Recent advance in biological responsive nanomaterials for biosensing and molecular imaging application.Int. J. Mol. Sci.20222331923193910.3390/ijms23031923 35163845
    [Google Scholar]
  18. ShaoS. RajendiranV. LovellJ.F. Metalloporphyrin nanoparticles: Coordinating diverse theranostic functions.Coord. Chem. Rev.20193799912010.1016/j.ccr.2017.09.002 30559508
    [Google Scholar]
  19. ZhaoL. WengY. ZhouX. WuG. Aminoselenation and dehydroaromatization of cyclohexanones with anilines and diselenides.Org. Lett.202426224835483910.1021/acs.orglett.4c01799 38809603
    [Google Scholar]
  20. LiL.L. DiauE.W.G. Porphyrin-sensitized solar cells.Chem. Soc. Rev.201342129130410.1039/C2CS35257E 23023240
    [Google Scholar]
  21. ZhaoC. TangX. ChenX. JiangZ. Multifaceted carbonized metal–organic frameworks synergize with immune checkpoint inhibitors for precision and augmented cuproptosis cancer therapy.ACS Nano20241827178521786810.1021/acsnano.4c04022 38939981
    [Google Scholar]
  22. LiS.H. ZhangC.R. YuanL.H. ZhangM.L. ChenY.H. LiuZ.J. ChenH-S. The role of electronic donor moieties in porphyrin dye sensitizers for solar cells: Electronic structures and excitation related properties.J. Renew. Sustain. Energy20179505350510.1063/1.5001259
    [Google Scholar]
  23. ZhangW. LaiW. CaoR. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin-and corrole-based systems.Chem. Rev.201711743717379710.1021/acs.chemrev.6b00299 28222601
    [Google Scholar]
  24. LovellJ.F. JinC.S. HuynhE. JinH. KimC. RubinsteinJ.L. ChanW.C.W. CaoW. WangL.V. ZhengG. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents.Nat. Mater.201110432433210.1038/nmat2986 21423187
    [Google Scholar]
  25. BhattacharyaA. RajaS.O. AhmedM.A. BandyopadhyayS. DasguptaA.K. Magnetic properties of photosynthetic materials-a nano scale study.arXiv preprint, 1706088612017
    [Google Scholar]
  26. SinghS. AggarwalA. BhupathirajuN.V.S.D.K. AriannaG. TiwariK. DrainC.M. Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics.Chem. Rev.201511518102611030610.1021/acs.chemrev.5b00244 26317756
    [Google Scholar]
  27. WangK. XuY. ChenZ. LiH. HuR. QuJ. LuY. LiuL. NIR-II light-activated two-photon squaric acid dye with Type I photodynamics for antitumor therapy.Nanophotonics202211225089510010.1515/nanoph‑2022‑0482
    [Google Scholar]
  28. EthirajanM. ChenY. JoshiP. PandeyR.K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy.Chem. Soc. Rev.201140134036210.1039/B915149B 20694259
    [Google Scholar]
  29. LiX. ZhengB.D. PengX.H. LiS.Z. YingJ.W. ZhaoY. HuangJ-D. YoonJ. Phthalocyanines as medicinal photosensitizers: Developments in the last five years.Coord. Chem. Rev.201937914716010.1016/j.ccr.2017.08.003
    [Google Scholar]
  30. TianJ. Review of porphyrin-based photodynamic therapy materials.Preprints202010.31219/osf.io/s4gx8
    [Google Scholar]
  31. ZhouZ. SongJ. NieL. ChenX. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy.Chem. Soc. Rev.201645236597662610.1039/C6CS00271D 27722328
    [Google Scholar]
  32. WangY.Y. LiuY.C. SunH. GuoD.S. Type I photodynamic therapy by organic–inorganic hybrid materials: From strategies to applications.Coord. Chem. Rev.2019395466210.1016/j.ccr.2019.05.016
    [Google Scholar]
  33. DeRosaM. CrutchleyR.J. Photosensitized singlet oxygen and its applications.Coord. Chem. Rev.2002233-23435137110.1016/S0010‑8545(02)00034‑6
    [Google Scholar]
  34. DolmansD.E.J.G.J. FukumuraD. JainR.K. Photodynamic therapy for cancer.Nat. Rev. Cancer20033538038710.1038/nrc1071 12724736
    [Google Scholar]
  35. AlibashaA. GhoshM. Recent developments of porphyrin photosensitizers in photodynamic therapy.ChemRxiv2023
    [Google Scholar]
  36. XieX. WangX. LiangY. YangJ. WuY. LiL. SunX. BingP. HeB. TianG. ShiX. Evaluating cancer-related biomarkers based on pathological images: A systematic review.Front. Oncol.20211176352710.3389/fonc.2021.763527 34900711
    [Google Scholar]
  37. WuW. ShaoX. ZhaoJ. WuM. Controllable photodynamic therapy implemented by regulating singlet oxygen efficiency.Adv. Sci.201747170011310.1002/advs.201700113 28725533
    [Google Scholar]
  38. NgA.C.H. LiX. NgD.K.P. Synthesis and photophysical properties of nonaggregated phthalocyanines bearing dendritic substituents.Macromolecules199932165292529810.1021/ma990367s
    [Google Scholar]
  39. XuL. ZhangW. CaiH. LiuF. WangY. GaoY. ZhangW. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles.J. Mater. Chem. B Mater. Biol. Med.20153377417742610.1039/C5TB01363A 32262768
    [Google Scholar]
  40. YuG. YuS. SahaM.L. ZhouJ. CookT.R. YungB.C. ChenJ. MaoZ. ZhangF. ZhouZ. LiuY. ShaoL. WangS. GaoC. HuangF. StangP.J. ChenX. A discrete organoplatinum(II) metallacage as a multimodality theranostic platform for cancer photochemotherapy.Nat. Commun.201891433510.1038/s41467‑018‑06574‑7 30337535
    [Google Scholar]
  41. XueX. HuangY. BoR. JiaB. WuH. YuanY. WangZ. MaZ. JingD. XuX. YuW. LinT. LiY. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment.Nat. Commun.201891365310.1038/s41467‑018‑06093‑5 30194413
    [Google Scholar]
  42. GalluzziL. MaiuriM.C. VitaleI. ZischkaH. CastedoM. ZitvogelL. KroemerG. Cell death modalities: Classification and pathophysiological implications.Cell Death Differ.20071471237124310.1038/sj.cdd.4402148 17431418
    [Google Scholar]
  43. LeeX.C. WernerE. FalascaM. Molecular mechanism of autophagy and its regulation by cannabinoids in cancer.Cancers2021136121110.3390/cancers13061211 33802014
    [Google Scholar]
  44. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  45. GlickD. BarthS. MacleodK.F. Autophagy: Cellular and molecular mechanisms.J. Pathol.2010221131210.1002/path.2697 20225336
    [Google Scholar]
  46. GargA.D. BoseM. AhmedM.I. BonassW.A. WoodS.R. In vitro studies on erythrosine-based photodynamic therapy of malignant and pre-malignant oral epithelial cells.PLoS One201274e3447510.1371/journal.pone.0034475 22485174
    [Google Scholar]
  47. MoonY.H. ParkJ.H. KimS.A. LeeJ.B. AhnS.G. YoonJ.H. Anticancer effect of photodynamic therapy with hexenyl ester of 5‐aminolevulinic acid in oral squamous cell carcinoma.Head Neck20103291136114210.1002/hed.21301 19953630
    [Google Scholar]
  48. YoonJ.H. YoonH.E. KimO. KimS.K. AhnS.G. KangK.W. The enhanced anti‐cancer effect of hexenyl ester of 5‐aminolaevulinic acid photodynamic therapy in adriamycin‐resistant compared to non‐resistant breast cancer cells.Lasers Surg. Med.2012441768610.1002/lsm.21154 22246987
    [Google Scholar]
  49. Abdel GaberS.A. SteppH. Abdel KaderM.H. LindénM. Mesoporous silica nanoparticles boost aggressive cancer response to hydrophilic chlorin e6-mediated photodynamic therapy.Cancer Nanotechnol.20231416710.1186/s12645‑023‑00216‑4
    [Google Scholar]
  50. ChiaravalliG. LanzaniG. SaccoR. SalsaS. Nanoparticle-based organic polymer retinal prostheses: Modeling, solution map and simulation.Math. Eng.20235414410.3934/mine.2023075
    [Google Scholar]
  51. BianS. ZhengX. LiuW. LiJ. GaoZ. RenH. ZhangW. LeeC.S. WangP. Pyrrolopyrrole aza-BODIPY-based NIR-II fluorophores for in vivo dynamic vascular dysfunction visualization of vascular-targeted photodynamic therapy.Biomaterials202329812213010.1016/j.biomaterials.2023.122130 37146363
    [Google Scholar]
  52. LiangY. ZhangM. ZhangY. ZhangM. Ultrasound sonosensitizers for tumor sonodynamic therapy and imaging: A new direction with clinical translation.Molecules20232818648410.3390/molecules28186484 37764260
    [Google Scholar]
  53. OlooS.O. SmithK.M. VicenteM.G.H. Multi-functional boron-delivery agents for boron neutron capture therapy of cancers.Cancers20231513327710.3390/cancers15133277 37444386
    [Google Scholar]
  54. HsuM.A. OkamuraS.M. De Magalhaes FilhoC.D. BergeronD.M. RodriguezA. WestM. YadavD. HeimR. FongJ.J. Garcia-GuzmanM. Cancer-targeted photoimmunotherapy induces antitumor immunity and can be augmented by anti-PD-1 therapy for durable anticancer responses in an immunologically active murine tumor model.Cancer Immunol. Immunother.202372115116810.1007/s00262‑022‑03239‑9 35776159
    [Google Scholar]
  55. PuttaswamyN.Y. MahantaP. SarmaP. MedhiC. KaidS.M.A. KullaiahB. BasumataryD. ManjasettyB.A. Structure‐based biological investigations on ruthenium complexes containing 2,2′‐bipyridine ligands and their applications in photodynamic therapy as a potential photosensitizer.Chem. Biol. Drug Des.202310261506152010.1111/cbdd.14341 37722881
    [Google Scholar]
  56. SasakiM. TanakaM. KojimaY. NishieH. ShimuraT. KubotaE. KataokaH. Anti-tumor immunity enhancement by photodynamic therapy with talaporfin sodium and anti-programmed death 1 antibody.Mol. Ther. Oncolytics20232811813110.1016/j.omto.2022.12.009 36726602
    [Google Scholar]
  57. KohnJ.T. GildemeisterN. GrimmeS. FazziD. HansenA. Efficient calculation of electronic coupling integrals with the dimer projection method via a density matrix tight-binding potential.J. Chem. Phys.20231591414410610.1063/5.0167484 37818996
    [Google Scholar]
  58. XianX. GongF. ChenM. ZhengJ. TianJ. FuS. ZhouG. ZhangW. A near-infrared bacteriochlorin nanomedicine for enhanced photodynamic therapy.Eur. Polym. J.202319711232810.1016/j.eurpolymj.2023.112328
    [Google Scholar]
  59. MarianoG.E. SoaresM.E. DiasD.M. CarneiroG. GaloR. Singlet oxygen release due to different concentrations of photosensitizer.Acta Sci. Health Sci.202345e6126410.4025/actascihealthsci.v45i1.61264
    [Google Scholar]
  60. HalaškováM. Study of original phthalocyanine photosensitizers at the cellular level.2023
    [Google Scholar]
  61. Nompumelelo SimelaneN.W. KrugerC.A. AbrahamseH. Photodynamic diagnosis and photodynamic therapy of colorectal cancer in vitro and in vivo.RSC Advances20201068415604157610.1039/D0RA08617G 35516575
    [Google Scholar]
  62. JosefsenL.B. BoyleR.W. Photodynamic therapy and the development of metal-based photosensitisers.Metal-based Drugs2008200827610910.1155/2008/276109
    [Google Scholar]
  63. FriedbergJ.S. MickR. StevensonJ.P. ZhuT. BuschT.M. ShinD. SmithD. CulliganM. DimofteA. GlatsteinE. HahnS.M. Phase II trial of pleural photodynamic therapy and surgery for patients with non-small-cell lung cancer with pleural spread.J. Clin. Oncol.200422112192220110.1200/JCO.2004.07.097 15169808
    [Google Scholar]
  64. HopperC. KüblerA. LewisH. TanI.B. PutnamG. GroupF.S. mTHPC‐mediated photodynamic therapy for early oral squamous cell carcinoma.Int. J. Cancer2004111113814610.1002/ijc.20209 15185355
    [Google Scholar]
  65. WainwrightM. CrossleyK.B. Methylene Blue--a therapeutic dye for all seasons?J. Chemother.200214543144310.1179/joc.2002.14.5.431 12462423
    [Google Scholar]
  66. TsengS.P. HungW.C. ChenH.J. LinY.T. JiangH.S. ChiuH.C. HsuehP.R. TengL.J. TsaiJ.C. Effects of toluidine blue O (TBO)-photodynamic inactivation on community-associated methicillin-resistant Staphylococcus aureus isolates.J. Microbiol. Immunol. Infect.2017501465410.1016/j.jmii.2014.12.007 25670474
    [Google Scholar]
  67. TardivoJ.P. AdamiF. CorreaJ.A. PinhalM.A.S. BaptistaM.S. A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients.Photodiagn. Photodyn. Ther.201411334235010.1016/j.pdpdt.2014.04.007 24814697
    [Google Scholar]
  68. GracianoT.B. CoutinhoT.S. CressoniC.B. FreitasC.P. PierreM.B.R. de Lima PereiraS.A. ShimanoM.M. Cristina da Cunha FrangeR. GarciaM.T.J. Using chitosan gels as a toluidine blue O delivery system for photodynamic therapy of buccal cancer: In vitro and in vivo studies.Photodiagn. Photodyn. Ther.20151219810710.1016/j.pdpdt.2014.11.003 25463317
    [Google Scholar]
  69. BoensN. LeenV. DehaenW. Fluorescent indicators based on BODIPY.Chem. Soc. Rev.20124131130117210.1039/C1CS15132K 21796324
    [Google Scholar]
  70. KubrakT. KarakułaM. CzopM. Kawczyk-KrupkaA. AebisherD. Advances in management of Bladder cancer—the role of photodynamic therapy.Molecules202227373110.3390/molecules27030731 35163996
    [Google Scholar]
  71. SimõesJ.C.S. SarpakiS. PapadimitroulasP. TherrienB. LoudosG. Conjugated photosensitizers for imaging and PDT in cancer research.J. Med. Chem.20206323141191415010.1021/acs.jmedchem.0c00047 32990442
    [Google Scholar]
  72. YaoQ. FanJ. LongS. ZhaoX. LiH. DuJ. ShaoK. PengX. The concept and examples of type-III photosensitizers for cancer photodynamic therapy.Chem20228119720910.1016/j.chempr.2021.10.006
    [Google Scholar]
  73. JiangM. WuJ. LiuW. RenH. ZhangW. LeeC.S. WangP. Self‐assembly of Amphiphilic porphyrins to construct nanoparticles for highly efficient photodynamic therapy.Chemistry20212743111951120410.1002/chem.202101199 33960049
    [Google Scholar]
  74. Mfouo-TyngaI.S. DiasL.D. InadaN.M. KurachiC. Features of third generation photosensitizers used in anticancer photodynamic therapy: Review.Photodiagn. Photodyn. Ther.20213410209110.1016/j.pdpdt.2020.102091 33453423
    [Google Scholar]
  75. ZhengB.D. YeJ. ZhangX.Q. ZhangN. XiaoM.T. Recent advances in supramolecular activatable phthalocyanine-based photosensitizers for anti-cancer therapy.Coord. Chem. Rev.202144721415510.1016/j.ccr.2021.214155
    [Google Scholar]
  76. BalalaevaI.V. MishchenkoT.A. TurubanovaV.D. PeskovaN.N. ShilyaginaN.Y. PlekhanovV.I. LermontovaS.A. KlapshinaL.G. VedunovaM.V. KryskoD.V. Cyanoarylporphyrazines with high viscosity sensitivity: A step towards dosimetry-assisted photodynamic cancer treatment.Molecules20212619581610.3390/molecules26195816 34641360
    [Google Scholar]
  77. XueE.Y. ShiW.J. FongW.P. NgD.K.P. Targeted delivery and site-specific activation of β-cyclodextrin-conjugated photosensitizers for photodynamic therapy through a supramolecular bio-orthogonal approach.J. Med. Chem.20216420154611547610.1021/acs.jmedchem.1c01505 34662121
    [Google Scholar]
  78. HuangK. ZhangH. YanM. XueJ. ChenJ. A novel zinc phthalocyanine-indometacin photosensitizer with “Three-in-one” cyclooxygenase-2-driven dual targeting and aggregation inhibition for high-efficient anticancer therapy.Dyes Pigments202219810999710.1016/j.dyepig.2021.109997
    [Google Scholar]
  79. LeeD. KwonS. JangS. ParkE. LeeY. KooH. Overcoming the obstacles of current photodynamic therapy in tumors using nanoparticles.Bioact. Mater.20228203410.1016/j.bioactmat.2021.06.019 34541384
    [Google Scholar]
  80. PanJ. DuJ. HuQ. LiuY. ZhangX. LiX. ZhouD. YaoQ. LongS. FanJ. PengX. Photo‐induced electron transfer‐triggered structure deformation promoting near‐infrared photothermal conversion for tumor therapy.Adv. Healthc. Mater.20231227230109110.1002/adhm.202301091 37321560
    [Google Scholar]
  81. PalL.B. BuleP. KhanW. ChellaN. An overview of the development and preclinical evaluation of antibody–drug conjugates for non-oncological applications.Pharmaceutics2023157180710.3390/pharmaceutics15071807 37513995
    [Google Scholar]
  82. Domínguez-LlamasS. Caro-MagdalenoM. Mataix-AlbertB. Avilés-PrietoJ. Romero-BarrancaI. Rodríguez-de-la-RúaE. Adverse events of antibody–drug conjugates on the ocular surface in cancer therapy.Clin. Transl. Oncol.202325113086310010.1007/s12094‑023‑03261‑y 37454027
    [Google Scholar]
  83. SubhanM.A. TorchilinV.P. Advances in targeted therapy of breast cancer with antibody-drug conjugate.Pharmaceutics2023154124210.3390/pharmaceutics15041242 37111727
    [Google Scholar]
  84. AlaviM. YaraniR. ROS and RNS modulation: The main antimicrobial, anticancer, antidiabetic, and antineurodegenerative mechanisms of metal or metal oxide nanoparticles.Nano Micro Biosystems.2023212230
    [Google Scholar]
  85. LiY. ZhangR. WanQ. HuR. MaY. WangZ. HouJ. ZhangW. TangB.Z. Trojan horse‐like nano‐AIE aggregates based on homologous targeting strategy and their photodynamic therapy in anticancer application.Adv. Sci. (Weinh.)2021823210256110.1002/advs.202102561 34672122
    [Google Scholar]
  86. SarbadhikaryP. GeorgeB.P. AbrahamseH. Recent advances in photosensitizers as multifunctional theranostic agents for imaging-guided photodynamic therapy of cancer.Theranostics202111189054908810.7150/thno.62479 34522227
    [Google Scholar]
  87. DoričićK. Synthetic 5-[4-[cis-9, 10-epoxyoctadecanamide] phenyl]-10, 15, 20-tris[N-methylpyridin-3-yl] porphyrin trichloride,; University of Rijeka.Department of Biotechnology2023
    [Google Scholar]
  88. ShindeS.U. GiddeN.D. ShindeP.P. KadamA.B. An overview of nanoparticles: Current scenario.Res. J. Pharm. Dosage Forms Technol.202113323924610.52711/0975‑4377.2021.00040
    [Google Scholar]
  89. KabiriF. MirfakhraeeS. ArdakaniY.H. DinarvandR. Hollow mesoporous silica nanoparticles for co-delivery of hydrophobic and hydrophilic molecules: Mechanism of drug loading and release.J. Nanopart. Res.2021231022610.1007/s11051‑021‑05332‑z
    [Google Scholar]
  90. ShilyaginaN.Y. ShestakovaL.N. PeskovaN.N. LermontovaS.A. LyubovaT.S. KlapshinaL.G. BalalaevaI.V. Cyanoarylporphyrazine dyes: Multimodal compounds for personalised photodynamic therapy.Biophys. Rev.202315597198210.1007/s12551‑023‑01134‑w 37975009
    [Google Scholar]
  91. OtvaginV.F. KrylovaL.V. PeskovaN.N. KuzminaN.S. FedotovaE.A. NyuchevA.V. A first-in-class β-glucuronidase responsive conjugate for selective dual targeted and photodynamic therapy of bladder cancer.Eur. J. Med. Chem.202426911628310.1016/j.ejmech.2024.116283
    [Google Scholar]
  92. GhoochaniS.H. HosseiniH.A. SabouriZ. SoheilifarM.H. NeghabH.K. HashemzadehA. VelayatiM. DarroudiM. Zn(II) porphyrin–encapsulated MIL-101 for photodynamic therapy of breast cancer cells.Lasers Med. Sci.202338115110.1007/s10103‑023‑03813‑2 37378703
    [Google Scholar]
  93. Prieto-MonteroR. ArbeloaT. Martínez-MartínezV. PHOTOSENSITIZER‐MESOPOROUS silica nanoparticles combination for enhanced photodynamic therapy †.Photochem. Photobiol.202399388290010.1111/php.13802 36916066
    [Google Scholar]
  94. XiongM. GhoshM.K. LuL. LiuX.H. MuddassirM. GhoraiT.K. Synthesis and characterized three Zn(II)-based mixed geometry coordination polymers and photocatalytic activity against dyes.Polyhedron202324611669310.1016/j.poly.2023.116693
    [Google Scholar]
  95. NajafiM. AbednatanziS. YousefiA. GhaediM. Photocatalytic activity of supported metal nanoparticles and single atoms.Chemistry20212772179991801410.1002/chem.202102877 34672043
    [Google Scholar]
  96. HuangX. SunX. WangW. ShenQ. ShenQ. TangX. ShaoJ. Nanoscale metal–organic frameworks for tumor phototherapy.J. Mater. Chem. B Mater. Biol. Med.20219183756377710.1039/D1TB00349F 33870980
    [Google Scholar]
  97. CastanoA.P. DemidovaT.N. HamblinM.R. Mechanisms in photodynamic therapy: Part one—photosensitizers, photochemistry and cellular localization.Photodiagn. Photodyn. Ther.20041427929310.1016/S1572‑1000(05)00007‑4 25048432
    [Google Scholar]
  98. KargesJ. HeinemannF. JakubaszekM. MaschiettoF. SubeczC. DotouM. VinckR. BlacqueO. TharaudM. GoudB. Viñuelas ZahínosE. SpinglerB. CiofiniI. GasserG. Rationally designed long-wavelength absorbing Ru [II] polypyridyl complexes as photosensitizers for photodynamic therapy.J. Am. Chem. Soc.2020142146578658710.1021/jacs.9b13620 32172564
    [Google Scholar]
  99. MasterA. LivingstonM. Sen GuptaA. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges.J. Control. Release201316818810210.1016/j.jconrel.2013.02.020 23474028
    [Google Scholar]
  100. OgawaraK. HigakiK. Nanoparticle-based photodynamic therapy: Current status and future application to improve outcomes of cancer treatment.Chem. Pharm. Bull.201765763764110.1248/cpb.c17‑00063 28674336
    [Google Scholar]
  101. CanyurtM. Efforts towards synthesis of hydrogen sulfide activated bodipy based pdt agent.Middle East Technical University2022
    [Google Scholar]
  102. LeporattiS. Thinking about Enhanced Permeability and Retention Effect.MDPI20221259
    [Google Scholar]
  103. WakiyamaH. FurusawaA. OkadaR. InagakiF. KatoT. FurumotoH. FukushimaH. OkuyamaS. ChoykeP.L. KobayashiH. Opening up new VISTAs: V-domain immunoglobulin suppressor of T cell activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers.Cancer Immunol. Immunother.202271122869287910.1007/s00262‑022‑03205‑5 35445836
    [Google Scholar]
  104. XuY. TanY. MaX. JinX. TianY. LiM. Photodynamic therapy with tumor cell discrimination through RNA-targeting ability of photosensitizer.Molecules20212619599010.3390/molecules26195990 34641533
    [Google Scholar]
  105. CorreiaJ.H. RodriguesJ.A. PimentaS. DongT. YangZ. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions.Pharmaceutics2021139133210.3390/pharmaceutics13091332 34575408
    [Google Scholar]
  106. WangX. LuoD. BasilionJ.P. Photodynamic therapy: Targeting cancer biomarkers for the treatment of cancers.Cancers20211312299210.3390/cancers13122992 34203805
    [Google Scholar]
  107. SobhaniN. SamadaniA.A. Implications of photodynamic cancer therapy: An overview of PDT mechanisms basically and practically.J. Egypt. Natl. Canc. Inst.20213313410.1186/s43046‑021‑00093‑1 34778919
    [Google Scholar]
  108. GunaydinG. GedikM.E. AyanS. Photodynamic therapy—current limitations and novel approaches.Front Chem.2021969169710.3389/fchem.2021.691697 34178948
    [Google Scholar]
  109. VyasD. PatelM. WairkarS. Strategies for active tumor targeting-an update.Eur. J. Pharmacol.202291517451210.1016/j.ejphar.2021.174512 34555395
    [Google Scholar]
  110. PantK. NeuberC. ZarschlerK. WodtkeJ. MeisterS. HaagR. PietzschJ. StephanH. Active targeting of dendritic polyglycerols for diagnostic cancer imaging.Small2020167190501310.1002/smll.201905013 31880080
    [Google Scholar]
  111. PengY. TaoH. GaoY. YangY. ChenZ. Review and prospect of tissue-agnostic targeted strategies in anticancer therapies.Curr. Top. Med. Chem.202121540442510.2174/1568026620666200616143247 32543358
    [Google Scholar]
  112. ThankiK. KushwahV. JainS. Recent Advances in Tumor Targeting Approaches.Targeted Drug Delivery: Concepts and Design. Advances in Delivery Science and Technology. DevarajanP. JainS. Springer, Cham20154111210.1007/978‑3‑319‑11355‑5_2
    [Google Scholar]
  113. HodgkinsonN. KrugerC.A. AbrahamseH. Targeted photodynamic therapy as potential treatment modality for the eradication of colon cancer and colon cancer stem cells.Tumour Biol.20173910101042831773469110.1177/1010428317734691 28990490
    [Google Scholar]
  114. SakuraiY. KajimotoK. HatakeyamaH. HarashimaH. Advances in an active and passive targeting to tumor and adipose tissues.Expert Opin. Drug Deliv.2015121415210.1517/17425247.2015.955847 25376864
    [Google Scholar]
  115. DongW. LiK. WangS. QiuL. LiuQ. XieM. LinJ. Targeted photodynamic therapy [PDT] of lung cancer with biotinylated silicon [IV] phthalocyanine.Curr. Pharm. Biotechnol.202122341442210.2174/1389201021666200510001627 32386488
    [Google Scholar]
  116. AdhikarlaV. AwuahD. BrummerA.B. CasertaE. KrishnanA. PichiorriF. MinnixM. ShivelyJ.E. WongJ.Y.C. WangX. RockneR.C. A mathematical modeling approach for targeted radionuclide and chimeric antigen receptor t cell combination therapy.Cancers20211320517110.3390/cancers13205171 34680320
    [Google Scholar]
  117. StarkeyJ.R. PascucciE.M. DrobizhevM.A. ElliottA. RebaneA.K. Vascular targeting to the SST2 receptor improves the therapeutic response to near-IR two-photon activated PDT for deep-tissue cancer treatment.Biochim. Biophys. Acta, Gen. Subj.20131830104594460310.1016/j.bbagen.2013.05.043 23747302
    [Google Scholar]
  118. KoY.J. KimW.J. KimK. KwonI.C. Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research.J. Control. Release201930511710.1016/j.jconrel.2019.04.030 31054991
    [Google Scholar]
  119. ZouL. WangH. HeB. ZengL. TanT. CaoH. HeX. ZhangZ. GuoS. LiY. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics.Theranostics20166676277210.7150/thno.14988 27162548
    [Google Scholar]
  120. TianJ. ZhangW. Synthesis, self-assembly and applications of functional polymers based on porphyrins.Prog. Polym. Sci.2019956511710.1016/j.progpolymsci.2019.05.002
    [Google Scholar]
  121. BrauneckerW.A. MatyjaszewskiK. Controlled/living radical polymerization: Features, developments, and perspectives.Prog. Polym. Sci.20073219314610.1016/j.progpolymsci.2006.11.002
    [Google Scholar]
  122. BarbeyR. LavanantL. ParipovicD. SchüwerN. SugnauxC. TuguluS. KlokH.A. Polymer brushes via surface-initiated controlled radical polymerization: Synthesis, characterization, properties, and applications.Chem. Rev.2009109115437552710.1021/cr900045a 19845393
    [Google Scholar]
  123. LiZ.Y. WangH.Y. LiC. ZhangX.L. WuX.J. QinS.Y. ZhangX-Z. ZhuoR-X. Porphyrin‐functionalized amphiphilic diblock copolypeptides for photodynamic therapy.J. Polym. Sci. A Polym. Chem.201149128629210.1002/pola.24451
    [Google Scholar]
  124. IbarraL.E. PorcalG.V. MacorL.P. PonzioR.A. SpadaR.M. LorenteC. ChestaC.A. RivarolaV.A. PalaciosR.E. Metallated porphyrin-doped conjugated polymer nanoparticles for efficient photodynamic therapy of brain and colorectal tumor cells.Nanomedicine201813660562410.2217/nnm‑2017‑0292 29376764
    [Google Scholar]
  125. TianJ. ZhangW. Construction and applications of well-defined porphyrin-containing polymers.Gaofenzi Xuebao201950653670
    [Google Scholar]
  126. HanK. LeiQ. WangS.B. HuJ.J. QiuW.X. ZhuJ.Y. YinW-N. LuoX. ZhangX-Z. Dual‐stage‐light‐guided tumor inhibition by mitochondria‐targeted photodynamic therapy.Adv. Funct. Mater.201525202961297110.1002/adfm.201500590
    [Google Scholar]
  127. TianJ. XuL. XueY. JiangX. ZhangW. Enhancing photochemical internalization of DOX through a porphyrin-based amphiphilic block copolymer.Biomacromolecules201718123992400110.1021/acs.biomac.7b01037 29035561
    [Google Scholar]
  128. HuangB. TianJ. JiangD. GaoY. ZhangW. NIR-activated “OFF/ON” Photodynamic therapy by a hybrid nanoplatform with upper critical solution temperature block copolymers and gold nanorods.Biomacromolecules201920103873388310.1021/acs.biomac.9b00963 31490661
    [Google Scholar]
  129. LehnJ-M. Supramolecular chemistryVchWeinheim Germany1995249424444
    [Google Scholar]
  130. LehnJ.M. Supramolecular chemistry: From molecular information towards self-organization and complex matter.Rep. Prog. Phys.200467324926510.1088/0034‑4885/67/3/R02
    [Google Scholar]
  131. Alva-EnsasteguiJ.C. Ramírez-SilvaM.T. Study of the interaction between polyphenol, quercetin and three micelles with different electric charges in acidic and aqueous media.J. Indian Chem. Soc.2023100910106310.1016/j.jics.2023.101063
    [Google Scholar]
  132. DevaV. MishraR.K. SharmaM. YadavG. JahanI. PandeyV. Nanoparticle-mediated Delivery of Anticancer Drugs for Brain Metastases.2023
    [Google Scholar]
  133. GuoD.S. LiuY. Calixarene-based supramolecular polymerization in solution.Chem. Soc. Rev.201241185907592110.1039/c2cs35075k 22617955
    [Google Scholar]
  134. AidaT. MeijerE.W. StuppS.I. Functional supramolecular polymers.Science2012335607081381710.1126/science.1205962 22344437
    [Google Scholar]
  135. GuZ.Y. GuoD.S. SunM. LiuY. Effective enlargement of fluorescence resonance energy transfer of poly-porphyrin mediated by β-cyclodextrin dimers.J. Org. Chem.201075113600360710.1021/jo100351f 20443534
    [Google Scholar]
  136. ZhangJ. ZhengX. HuX. XieZ. GSH-triggered size increase of porphyrin-containing nanosystems for enhanced retention and photodynamic activity.J. Mater. Chem. B Mater. Biol. Med.20175234470447710.1039/C7TB00063D 32263974
    [Google Scholar]
  137. SwiechO. ChmurskiK. BilewiczR. Molecular interactions of β-cyclodextrins with monolayers containing adamantane and anthraquinone guest groups.Supramol. Chem.2010227-846146610.1080/10610278.2010.486138
    [Google Scholar]
  138. DaiY. LiQ. ZhangS. ShiS. LiY. ZhaoX. ZhouL. WangX. ZhuY. LiW. Smart GSH/pH dual-bioresponsive degradable nanosponges based on β-CD-appended hyper-cross-linked polymer for triggered intracellular anticancer drug delivery.J. Drug Deliv. Sci. Technol.20216410265010.1016/j.jddst.2021.102650
    [Google Scholar]
  139. FathallaM. NeubergerA. LiS.C. SchmehlR. DieboldU. JayawickramarajahJ. Straightforward self-assembly of porphyrin nanowires in water: Harnessing adamantane/β-cyclodextrin interactions.J. Am. Chem. Soc.2010132299966996710.1021/ja1030722 20597548
    [Google Scholar]
  140. ZhangY. XiangW. YangR. LiuF. LiK. Highly selective sensing of lead ion based on α-, β-, γ-, and δ-tetrakis(3,5-dibromo-2-hydroxylphenyl)porphyrin/β-CD inclusion complex.J. Photochem. Photobiol. Chem.2005173326427010.1016/j.jphotochem.2005.04.005
    [Google Scholar]
  141. ZhaoY. DengY. TangZ. JinQ. JiJ. Zwitterionic reduction-activated supramolecular prodrug nanocarriers for photodynamic ablation of cancer cells.Langmuir20193551919192610.1021/acs.langmuir.8b02745 30204452
    [Google Scholar]
  142. ÖzdemirZ. YangM. KimG. BildziukevichU. ŠamanD. LiX. YoonJ. WimmerZ. Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemo- and photodynamic therapy.Dyes Pigments202119010930710.1016/j.dyepig.2021.109307
    [Google Scholar]
  143. LiuX. ShaoW. ZhengY. YaoC. PengL. ZhangD. HuX.Y. WangL. GSH-Responsive supramolecular nanoparticles constructed by β-D-galactose-modified pillar[5]arene and camptothecin prodrug for targeted anticancer drug delivery.Chem. Commun.201753618596859910.1039/C7CC04932C 28718478
    [Google Scholar]
  144. XuX.D. ZhaoL. QuQ. WangJ.G. ShiH. ZhaoY. Imaging-guided drug release from glutathione-responsive supramolecular porphysome nanovesicles.ACS Appl. Mater. Interfaces2015731173711738010.1021/acsami.5b06026 26186168
    [Google Scholar]
  145. MagnaG. MontiD. Di NataleC. PaolesseR. StefanelliM. The assembly of porphyrin systems in well-defined nanostructures: An update.Molecules20192423430710.3390/molecules24234307 31779097
    [Google Scholar]
  146. McCannP. StafinskiT. WongC. MenonD. The safety and effectiveness of endoscopic and non-endoscopic approaches to the management of early esophageal cancer: A systematic review.Cancer Treat. Rev.2011371116210.1016/j.ctrv.2010.04.006 20570442
    [Google Scholar]
  147. BergK. Resistance mechanisms in photodynamic therapy.Photochem. Photobiol. Sci.20151481376137710.1039/c5pp90026c 26212047
    [Google Scholar]
  148. RodriguesJ.A. CorreiaJ.H. Photodynamic therapy for colorectal cancer: An update and a look to the future.Int. J. Mol. Sci.202324151220410.3390/ijms241512204 37569580
    [Google Scholar]
  149. KumarA. PecquenardF. BaydounM. QuilbéA. MoralèsO. LerouxB. AoudjehaneL. ContiF. BoleslawskiE. DelhemN. An efficient 5-aminolevulinic acid photodynamic therapy treatment for human hepatocellular carcinoma.Int. J. Mol. Sci.202324131042610.3390/ijms241310426 37445603
    [Google Scholar]
  150. ZengS. ChenC. ZhangL. LiuX. QianM. CuiH. WangJ. ChenQ. PengX. Activation of pyroptosis by specific organelle-targeting photodynamic therapy to amplify immunogenic cell death for anti-tumor immunotherapy.Bioact. Mater.20232558059310.1016/j.bioactmat.2022.07.016 37056275
    [Google Scholar]
  151. CasasA. PerottiC. Di VenosaG. BatlleA. Mechanisms of resistance to photodynamic Therapy: An update. Resistance to Photodynamic Therapy in Cancer. Resistance to Targeted Anti-Cancer Therapeutics.Cham.Springer2015296310.1007/978‑3‑319‑12730‑9_2
    [Google Scholar]
  152. HamblinM.R. Drug efflux pumps in photodynamic therapy. Drug Efflux Pumps in Cancer Resistance Pathways: From Molecular Recognition and Characterization to Possible Inhibition Strategies in Chemotherapy.Elsevier2020251276
    [Google Scholar]
  153. CasasA. Di VenosaG. HasanT. BatlleA. Mechanisms of resistance to photodynamic therapy.Curr. Med. Chem.201118162486251510.2174/092986711795843272 21568910
    [Google Scholar]
  154. Di VenosaG. PerottiC. BatlleA. CasasA. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions.Photochem. Photobiol. Sci.20151481451146410.1039/c4pp00445k 25832889
    [Google Scholar]
  155. PeskovaN.N. BrilkinaA.A. GorokhovaA.A. ShilyaginaN.Y. KutovaO.M. NerushA.S. OrlovaA.G. KlapshinaL.G. VodeneevV.V. BalalaevaI.V. The localization of the photosensitizer determines the dynamics of the secondary production of hydrogen peroxide in cell cytoplasm and mitochondria.J. Photochem. Photobiol. B202121911220810.1016/j.jphotobiol.2021.112208 33989888
    [Google Scholar]
  156. JiangQ. PanM. HuJ. SunJ. FanL. ZouZ. WeiJ. YangX. LiuX. Regulation of redox balance using a biocompatible nanoplatform enhances phototherapy efficacy and suppresses tumor metastasis.Chem. Sci.202112114815710.1039/D0SC04983B 34163586
    [Google Scholar]
  157. KlausenM. UcuncuM. BradleyM. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy.Molecules20202522523910.3390/molecules25225239 33182751
    [Google Scholar]
  158. LiM. LiG. WangH. YuanL. The chemodynamic antibacterial effect of MnOX nanosheet decorated silicon nanowire arrays.Mater. Adv.20223152653310.1039/D1MA00794G
    [Google Scholar]
  159. JungA.C. Moinard-ButotF. ThibaudeauC. GasserG. GaiddonC. Antitumor immune response triggered by metal-based photosensitizers for photodynamic therapy: Where are we?Pharmaceutics20211311178810.3390/pharmaceutics13111788 34834202
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575320468240912093945
Loading
/content/journals/mrmc/10.2174/0113895575320468240912093945
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; Cancer; photo-drugs; photodynamic therapy; porphyrin; reactive oxygen species
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test