Skip to content
2000
Volume 25, Issue 3
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575311618240820103549
2024-08-23
2025-01-15
Loading full text...

Full text loading...

References

  1. JiX. LiZ. Medicinal chemistry strategies toward host targeting antiviral agents.Med. Res. Rev.20204051519155710.1002/med.21664 32060956
    [Google Scholar]
  2. MasonS. DevincenzoJ.P. TooveyS. WuJ.Z. WhitleyR.J. Comparison of antiviral resistance across acute and chronic viral infections.Antiviral Res.201815810311210.1016/j.antiviral.2018.07.020 30086337
    [Google Scholar]
  3. RogoT. DeLongA.K. ChanP. KantorR. Antiretroviral treatment failure, drug resistance, and subtype diversity in the only pediatric HIV clinic in Rhode Island.Clin. Infect. Dis.20156091426143510.1093/cid/civ058 25637585
    [Google Scholar]
  4. WoollardS.M. KanmogneG.D. Maraviroc: A review of its use in HIV infection and beyond.Drug Des. Devel. Ther.2015954475468 26491256
    [Google Scholar]
  5. Ramírez-OlivenciaG. EstébanezM. MembrilloF.J. YbarraM.D.C. Use of ribavirin in viruses other than hepatitis C. A review of the evidence.Enferm. Infecc. Microbiol. Clin.201937960260810.1016/j.eimc.2018.05.008 38620198
    [Google Scholar]
  6. WangY. JinF. WangR. LiF. WuY. KitazatoK. WangY. HSP90: A promising broad-spectrum antiviral drug target.Arch. Virol.2017162113269328210.1007/s00705‑017‑3511‑1 28780632
    [Google Scholar]
  7. SchorS. EinavS. Repurposing of kinase inhibitors as broad-spectrum antiviral drugs.DNA Cell Biol.2018372636910.1089/dna.2017.4033 29148875
    [Google Scholar]
  8. CaputoA.T. AlonziD.S. KiappesJ.L. StruweW.B. CrossA. BasuS. DarlotB. RoversiP. ZitzmannN. Structural insights into the broad-spectrum antiviral target endoplasmic reticulum alpha-glucosidase II.Adv. Exp. Med. Biol.2018106226527610.1007/978‑981‑10‑8727‑1_19 29845539
    [Google Scholar]
  9. RossignolJ.F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent.Antiviral Res.20141109410310.1016/j.antiviral.2014.07.014 25108173
    [Google Scholar]
  10. MahmoudD.B. ShituZ. MostafaA. Drug repurposing of nitazoxanide: Can it be an effective therapy for COVID-19?J. Genet. Eng. Biotechnol.2020181353510.1186/s43141‑020‑00055‑5 32725286
    [Google Scholar]
  11. WangM. CaoR. ZhangL. YangX. LiuJ. XuM. ShiZ. HuZ. ZhongW. XiaoG. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.Cell Res.202030326927110.1038/s41422‑020‑0282‑0 32020029
    [Google Scholar]
  12. HeptinstallA.B. AdiyasaI.W.S. CanoC. HardcastleI.R. Recent advances in CDK inhibitors for cancer therapy.Future Med. Chem.201810111369138810.4155/fmc‑2017‑0246 29846081
    [Google Scholar]
  13. QinA. ReddyH.G. WeinbergF.D. KalemkerianG.P. Cyclin-dependent kinase inhibitors for the treatment of lung cancer.Expert Opin. Pharmacother.202021894195210.1080/14656566.2020.1738385 32164461
    [Google Scholar]
  14. SchangL.M. St VincentM.R. LacasseJ.J. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs.Antivir. Chem. Chemother.200617629332010.1177/095632020601700601 17249245
    [Google Scholar]
  15. ChengP.H. RaoX.M. McMastersK.M. ZhouH.S. Molecular basis for viral selective replication in cancer cells: Activation of CDK2 by adenovirus-induced cyclin E.PLoS One201382e5734010.1371/journal.pone.0057340 23437375
    [Google Scholar]
  16. GearhartT.L. BouchardM.J. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication.J. Virol.20108462675268610.1128/JVI.02196‑09 20053744
    [Google Scholar]
  17. NémethG. VargaZ. GreffZ. BenczeG. SiposA. Szántai-KisC. BaskaF. GyurisA. KelemenicsK. SzathmáryZ. MinárovitsJ. KériG. OrfiL. Novel, selective CDK9 inhibitors for the treatment of HIV infection.Curr. Med. Chem.201118334235810.2174/092986711794839188 21143121
    [Google Scholar]
  18. DurandL.O. RoizmanB. Role of CDK9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1.J. Virol.20088221105911059910.1128/JVI.01242‑08 18753202
    [Google Scholar]
  19. SchangL.M. Cyclin-dependent kinases as cellular targets for antiviral drugs.J. Antimicrob. Chemother.200250677979210.1093/jac/dkf227 12460995
    [Google Scholar]
  20. ChaoS.H. FujinagaK. MarionJ.E. TaubeR. SausvilleE.A. SenderowiczA.M. PeterlinB.M. PriceD.H. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication.J. Biol. Chem.200027537283452834810.1074/jbc.C000446200 10906320
    [Google Scholar]
  21. OuM. Sandri-GoldinR.M. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription.PLoS One2013810e7900710.1371/journal.pone.0079007 24205359
    [Google Scholar]
  22. PerwitasariO. YanX. O’DonnellJ. JohnsonS. TrippR.A. Repurposing kinase inhibitors as antiviral agents to control influenza A virus replication.Assay Drug Dev. Technol.2015131063864910.1089/adt.2015.0003.drrr 26192013
    [Google Scholar]
  23. SanchezV. McElroyA.K. YenJ. TamrakarS. ClarkC.L. SchwartzR.A. SpectorD.H. Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122-123 and UL37 immediate-early transcripts and at later times for virus production.J. Virol.20047820112191123210.1128/JVI.78.20.11219‑11232.2004 15452241
    [Google Scholar]
  24. PrasadV. SuomalainenM. HemmiS. GreberU.F. Cell cycle-dependent kinase CDK9 is a postexposure drug target against human adenoviruses.ACS Infect. Dis.20173639840510.1021/acsinfecdis.7b00009 28434229
    [Google Scholar]
  25. TaubeR. FujinagaK. WimmerJ. BarboricM. PeterlinB.M. Tat transactivation: A model for the regulation of eukaryotic transcriptional elongation.Virology1999264224525310.1006/viro.1999.9944 10562489
    [Google Scholar]
  26. NelsonP.J. GelmanI.H. KlotmanP.E. Suppression of HIV-1 expression by inhibitors of cyclin-dependent kinases promotes differentiation of infected podocytes.J. Am. Soc. Nephrol.200112122827283110.1681/ASN.V12122827 11729253
    [Google Scholar]
  27. NelsonP.J. D’AgatiV.D. GriesJ.M. SuarezJ.R. GelmanI.H. Amelioration of nephropathy in mice expressing HIV-1 genes by the cyclin-dependent kinase inhibitor flavopiridol.J. Antimicrob. Chemother.200351492192910.1093/jac/dkg175 12654740
    [Google Scholar]
  28. XingJ. ShankarR. DrelichA. PaithankarS. ChekalinE. DexheimerT. RajasekaranS. TsengC-T.K. ChenB. Reversal of infected host gene expression identifies repurposed drug candidates for COVID-19.BioRxiv202010.1101/2020.04.07.030734
    [Google Scholar]
  29. LeclercS. GarnierM. HoesselR. MarkoD. BibbJ.A. SnyderG.L. GreengardP. BiernatJ. WuY.Z. MandelkowE.M. EisenbrandG. MeijerL. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors?J. Biol. Chem.2001276125126010.1074/jbc.M002466200 11013232
    [Google Scholar]
  30. ZhangD. JiX. GaoR. WangH. MengS. ZhongZ. LiY. JiangJ. LiZ. Synthesis and antiviral activities of a novel class of thioflavone and flavonoid analogues.Acta Pharm. Sin. B20122657558010.1016/j.apsb.2012.10.005
    [Google Scholar]
  31. De AzevedoW.F. LeclercS. MeijerL. HavlicekL. StrnadM. KimS.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human CDK2 complexed with roscovitine.Eur. J. Biochem.19972431-251852610.1111/j.1432‑1033.1997.0518a.x 9030780
    [Google Scholar]
  32. KryštofV. McNaeI.W. WalkinshawM.D. FischerP.M. MüllerP. VojtěšekB. OrságM. HavlíčekL. StrnadM. Antiproliferative activity of olomoucine II, a novel 2,6,9-trisubstituted purine cyclin-dependent kinase inhibitor.Cell. Mol. Life Sci.200562151763177110.1007/s00018‑005‑5185‑1 16003486
    [Google Scholar]
  33. GrayN.S. WodickaL. ThunnissenA.M.W.H. NormanT.C. KwonS. EspinozaF.H. MorganD.O. BarnesG. LeClercS. MeijerL. KimS.H. LockhartD.J. SchultzP.G. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors.Science1998281537653353810.1126/science.281.5376.533 9677190
    [Google Scholar]
  34. HolcakovaJ. TomasecP. BugertJ.J. WangE.C.Y. WilkinsonG.W.G. HrstkaR. KrystofV. StrnadM. VojtesekB. The inhibitor of cyclin-dependent kinases, olomoucine II, exhibits potent antiviral properties.Antivir. Chem. Chemother.201020313314210.3851/IMP1460 20054100
    [Google Scholar]
  35. HolcakovaJ. MullerP. TomasecP. HrstkaR. NekulovaM. KrystofV. StrnadM. WilkinsonG.W.G. VojtesekB. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy.PLoS One201492e8922810.1371/journal.pone.0089228 24586613
    [Google Scholar]
  36. MoffatJ.F. McMichaelM.A. LeisenfelderS.A. TaylorS.L. Viral and cellular kinases are potential antiviral targets and have a central role in varicella zoster virus pathogenesis.Biochim. Biophys. Acta. Proteins Proteomics200416971-222523110.1016/j.bbapap.2003.11.026 15023363
    [Google Scholar]
  37. WangD. de la FuenteC. DengL. WangL. ZilbermanI. EadieC. HealeyM. SteinD. DennyT. HarrisonL.E. MeijerL. KashanchiF. Inhibition of human immunodeficiency virus type 1 transcription by chemical cyclin-dependent kinase inhibitors.J. Virol.200175167266727910.1128/JVI.75.16.7266‑7279.2001 11461999
    [Google Scholar]
  38. JordanR. SchangL. SchafferP.A. Transactivation of herpes simplex virus type 1 immediate-early gene expression by virion-associated factors is blocked by an inhibitor of cyclin-dependent protein kinases.J. Virol.199973108843884710.1128/JVI.73.10.8843‑8847.1999 10482641
    [Google Scholar]
  39. DiwanP. LacasseJ.J. SchangL.M. Roscovitine inhibits activation of promoters in herpes simplex virus type 1 genomes independently of promoter-specific factors.J. Virol.200478179352936510.1128/JVI.78.17.9352‑9365.2004 15308730
    [Google Scholar]
  40. OrbaY. SundenY. SuzukiT. NagashimaK. KimuraT. TanakaS. SawaH. Pharmacological CDK inhibitor R-Roscovitine suppresses JC virus proliferation.Virology2008370117318310.1016/j.virol.2007.08.034 17919676
    [Google Scholar]
  41. XuM. LeeE.M. WenZ. ChengY. HuangW.K. QianX. TcwJ. KouznetsovaJ. OgdenS.C. HammackC. JacobF. NguyenH.N. ItkinM. HannaC. ShinnP. AllenC. MichaelS.G. SimeonovA. HuangW. ChristianK.M. GoateA. BrennandK.J. HuangR. XiaM. MingG. ZhengW. SongH. TangH. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen.Nat. Med.201622101101110710.1038/nm.4184 27571349
    [Google Scholar]
  42. BresnahanW.A. BoldoghI. ChiP. ThompsonE.A. AlbrechtT. Inhibition of cellular CDK2 activity blocks human cytomegalovirus replication.Virology1997231223924710.1006/viro.1997.8489 9168886
    [Google Scholar]
  43. HaleB.G. KnebelA. BottingC.H. GallowayC.S. PreciousB.L. JacksonD. ElliottR.M. RandallR.E. CDK/ERK-mediated phosphorylation of the human influenza A virus NS1 protein at threonine-215.Virology2009383161110.1016/j.virol.2008.10.002 19007960
    [Google Scholar]
  44. HuangQ. ZhongY. LiJ. YeY. WuW. ChenL. FengM. YangJ. LiuS. Kinase inhibitor roscovitine as a PB2 cap-binding inhibitor against influenza a virus replication.Biochem. Biophys. Res. Commun.202052641143114910.1016/j.bbrc.2020.04.034 32327257
    [Google Scholar]
  45. Le TourneauC. FaivreS. LaurenceV. DelbaldoC. VeraK. GirreV. ChiaoJ. ArmourS. FrameS. GreenS.R. Gianella-BorradoriA. DiérasV. RaymondE. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies.Eur. J. Cancer201046183243325010.1016/j.ejca.2010.08.001 20822897
    [Google Scholar]
  46. SchangL.M. Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication.Biochim. Biophys. Acta. Proteins Proteomics200416971-219720910.1016/j.bbapap.2003.11.024 15023361
    [Google Scholar]
  47. KelsoT.W.R. BaumgartK. EickhoffJ. AlbertT. AntrechtC. LemckeS. KleblB. MeisterernstM. Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression, and survival of tumor cells.Mol. Cell. Biol.201434193675368810.1128/MCB.00595‑14 25047832
    [Google Scholar]
  48. HuttererC. EickhoffJ. MilbradtJ. KornK. ZeitträgerI. BahsiH. WagnerS. ZischinskyG. WolfA. DegenhartC. UngerA. BaumannM. KleblB. MarschallM. A novel CDK7 inhibitor of the Pyrazolotriazine class exerts broad-spectrum antiviral activity at nanomolar concentrations.Antimicrob. Agents Chemother.20155942062207110.1128/AAC.04534‑14 25624324
    [Google Scholar]
  49. YamamotoM. OnogiH. KiiI. YoshidaS. IidaK. SakaiH. AbeM. TsubotaT. ItoN. HosoyaT. HagiwaraM. CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses.J. Clin. Invest.201412483479348810.1172/JCI73805 25003190
    [Google Scholar]
  50. TanakaT. Okuyama-DobashiK. MurakamiS. ChenW. OkamotoT. UedaK. HosoyaT. MatsuuraY. RyoA. TanakaY. HagiwaraM. MoriishiK. Inhibitory effect of CDK9 inhibitor FIT-039 on hepatitis B virus propagation.Antiviral Res.201613315616410.1016/j.antiviral.2016.08.008 27515132
    [Google Scholar]
  51. NomuraT. SumiE. EgawaG. NakajimaS. ToichiE. UozumiR. TadaH. NakagawaT. HagiwaraM. KabashimaK. The efficacy of a cyclin dependent kinase 9 (CDK9) inhibitor, FIT039, on verruca vulgaris: study protocol for a randomized controlled trial.Trials201920148910.1186/s13063‑019‑3570‑6 31399147
    [Google Scholar]
  52. SumiE. NomuraT. AsadaR. UozumiR. TadaH. AminoY. SawadaT. YonezawaA. HagiwaraM. KabashimaK. Safety and plasma concentrations of a cyclin-dependent kinase 9 (CDK9) inhibitor, FIT039, administered by a single adhesive skin patch applied on normal skin and cutaneous Warts.Clin. Drug Investig.2019391556110.1007/s40261‑018‑0712‑7 30284700
    [Google Scholar]
  53. ChenP. LeeN.V. HuW. XuM. FerreR.A. LamH. BergqvistS. SolowiejJ. DiehlW. HeY.A. YuX. NagataA. VanArsdaleT. MurrayB.W. spectrum and degree of CDK drug interactions predicts clinical performance.Mol. Cancer Ther.201615102273228110.1158/1535‑7163.MCT‑16‑0300 27496135
    [Google Scholar]
  54. BakirT.M. The role of SAMHD1 expression and its relation to HIV-2 (Vpx) gene production.Saudi Pharm. J.201826690390810.1016/j.jsps.2018.03.005 30202235
    [Google Scholar]
  55. CribierA. DescoursB. ValadãoA.L.C. LaguetteN. BenkiraneM. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1.Cell Rep.2013341036104310.1016/j.celrep.2013.03.017 23602554
    [Google Scholar]
  56. WhiteT.E. Brandariz-NuñezA. Valle-CasusoJ.C. AmieS. NguyenL.A. KimB. TuzovaM. Diaz-GrifferoF. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation.Cell Host Microbe201313444145110.1016/j.chom.2013.03.005 23601106
    [Google Scholar]
  57. St GelaisC. de SilvaS. HachJ.C. WhiteT.E. Diaz-GrifferoF. YountJ.S. WuL. Identification of cellular proteins interacting with the retroviral restriction factor SAMHD1.J. Virol.201488105834584410.1128/JVI.00155‑14 24623419
    [Google Scholar]
  58. PaulsE. BadiaR. Torres-TorronterasJ. RuizA. PermanyerM. Riveira-MuñozE. ClotetB. MartiR. BallanaE. EstéJ.A. Palbociclib, a selective inhibitor of cyclin-dependent kinase4/6, blocks HIV-1 reverse transcription through the control of sterile α motif and HD domain-containing protein-1 (SAMHD1) activity.AIDS201428152213222210.1097/QAD.0000000000000399 25036183
    [Google Scholar]
  59. BadiaR. AnguloG. Riveira-MuñozE. PujantellM. PuigT. RamirezC. Torres-TorronterasJ. MartíR. PaulsE. ClotetB. BallanaE. EstéJ.A. Inhibition of herpes simplex virus type 1 by the CDK6 inhibitor PD-0332991 (palbociclib) through the control of SAMHD1.J. Antimicrob. Chemother.201671238739410.1093/jac/dkv363 26542306
    [Google Scholar]
  60. CoronaS.P. GeneraliD. Abemaciclib: A CDK4/6 inhibitor for the treatment of HR+/HER2– advanced breast cancer.Drug Des. Devel. Ther.20181232133010.2147/DDDT.S137783 29497278
    [Google Scholar]
  61. CastellvíM. FelipE. Pharmacological modulation of SAMHD1 activity by CDK4/6 inhibitors improves anticancer therapy.Cancers202012371310.3390/cancers12030713
    [Google Scholar]
  62. JeonS. KoM. LeeJ. ChoiI. ByunS.Y. ParkS. ShumD. KimS. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs.Antimicrob. Agents Chemother.2020647e008192010.1128/AAC.00819‑20 32366720
    [Google Scholar]
  63. SehgalP.B. DarnellJ.E.Jr TammI. The inhibition of DRB (5,6-dichloro-1-β-d-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells.Cell19769347348010.1016/0092‑8674(76)90092‑1 1086720
    [Google Scholar]
  64. BaumliS. EndicottJ.A. JohnsonL.N. Halogen bonds form the basis for selective P-TEFb inhibition by DRB.Chem. Biol.201017993193610.1016/j.chembiol.2010.07.012 20851342
    [Google Scholar]
  65. ManceboH.S.Y. LeeG. FlygareJ. TomassiniJ. LuuP. ZhuY. PengJ. BlauC. HazudaD. PriceD. FloresO. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro.Genes Dev.199711202633264410.1101/gad.11.20.2633 9334326
    [Google Scholar]
  66. TownsendL.B. DevivarR.V. TurkS.R. NassiriM.R. DrachJ.C. Design, synthesis, and antiviral activity of certain 2,5,6-trihalo-1-(beta-D-ribofuranosyl)benzimidazoles.J. Med. Chem.199538204098410510.1021/jm00020a025 7562945
    [Google Scholar]
  67. HoesselR. LeclercS. EndicottJ.A. NobelM.E.M. LawrieA. TunnahP. LeostM. DamiensE. MarieD. MarkoD. NiederbergerE. TangW. EisenbrandG. MeijerL. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases.Nat. Cell Biol.199911606710.1038/9035 10559866
    [Google Scholar]
  68. ChengX. MerzK.H. VatterS. ZellerJ. MuehlbeyerS. ThommetA. ChristJ. WölflS. EisenbrandG. identification of a water-soluble indirubin derivative as potent inhibitor of insulin-like growth factor 1 receptor through structural modification of the parent natural molecule.J. Med. Chem.201760124949496210.1021/acs.jmedchem.7b00324 28557430
    [Google Scholar]
  69. HerediaA. DavisC. BambaD. LeN. GwarzoM.Y. SadowskaM. GalloR.C. RedfieldR.R. Indirubin-3′-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication.AIDS200519182087209510.1097/01.aids.0000194805.74293.11 16284457
    [Google Scholar]
  70. MokC.K.P. KangS.S.R. ChanR.W.Y. YueP.Y.K. MakN.K. PoonL.L.M. WongR.N.S. PeirisJ.S.M. ChanM.C.W. Anti-inflammatory and antiviral effects of indirubin derivatives in influenza A (H5N1) virus infected primary human peripheral blood-derived macrophages and alveolar epithelial cells.Antiviral Res.20141069510410.1016/j.antiviral.2014.03.019 24717263
    [Google Scholar]
  71. KwokH.H. PoonP.Y. FokS.P. Ying-Kit YueP. MakN.K. ChanM.C.W. PeirisJ.S.M. WongR.N.S. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells.Sci. Rep.201661189411894110.1038/srep18941 26732368
    [Google Scholar]
  72. ChanM.C. ChanR.W. MokC.K. MakN.K. WongR.N. Indirubin-3'-oxime as an antiviral and immunomodulatory agent in treatment of severe human influenza virus infection.Hong Kong Med J201824Suppl 6)(54547
    [Google Scholar]
  73. MoonM.J. LeeS.K. LeeJ.W. SongW.K. KimS.W. KimJ.I. ChoC. ChoiS.J. KimY.C. Synthesis and structure–activity relationships of novel indirubin derivatives as potent anti-proliferative agents with CDK2 inhibitory activities.Bioorg. Med. Chem.200614123724610.1016/j.bmc.2005.08.008 16182537
    [Google Scholar]
  74. PolychronopoulosP. MagiatisP. SkaltsounisA.L. MyrianthopoulosV. MikrosE. TarriconeA. MusacchioA. RoeS.M. PearlL. LeostM. GreengardP. MeijerL. Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases.J. Med. Chem.200447493594610.1021/jm031016d 14761195
    [Google Scholar]
  75. DanN.T. QuangH.D. Van TruongV. Huu NghiD. CuongN.M. CuongT.D. ToanT.Q. BachL.G. AnhN.H.T. MaiN.T. LanN.T. Van ChinhL. QuanP.M. Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3ʹ-oxime derivatives.Sci. Rep.20201011142910.1038/s41598‑020‑68134‑8 32651416
    [Google Scholar]
  76. AlfhiliM.A. AlsughayyirJ. McCubreyJ.A. AkulaS.M. GSK-3-associated signaling is crucial to virus infection of cells.Biochim. Biophys. Acta Mol. Cell Res.202018671011876710.1016/j.bbamcr.2020.118767 32522661
    [Google Scholar]
  77. CriscitielloC. VialeG. EspositoA. CuriglianoG. Dinaciclib for the treatment of breast cancer.Expert Opin. Investig. Drugs20142391305131210.1517/13543784.2014.948152 25107301
    [Google Scholar]
  78. HossainD.M.S. JavaidS. CaiM. ZhangC. SawantA. HintonM. SatheM. GreinJ. BlumenscheinW. PinheiroE.M. ChackerianA. Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression.J. Clin. Invest.2018128264465410.1172/JCI94586 29337311
    [Google Scholar]
  79. ChaurushiyaM.S. WeitzmanM.D. Viral manipulation of DNA repair and cell cycle checkpoints.DNA Repair2009891166117610.1016/j.dnarep.2009.04.016 19473887
    [Google Scholar]
  80. BouhaddouM. MemonD. MeyerB. WhiteK.M. RezeljV.V. Correa MarreroM. PolaccoB.J. MelnykJ.E. UlfertsS. KaakeR.M. BatraJ. RichardsA.L. StevensonE. GordonD.E. RojcA. ObernierK. FabiusJ.M. SoucherayM. MiorinL. MorenoE. KohC. TranQ.D. HardyA. RobinotR. ValletT. Nilsson-PayantB.E. Hernandez-ArmentaC. DunhamA. WeigangS. KnerrJ. ModakM. QuinteroD. ZhouY. DugourdA. ValdeolivasA. PatilT. LiQ. HüttenhainR. CakirM. MuralidharanM. KimM. JangG. TutuncuogluB. HiattJ. GuoJ.Z. XuJ. BouhaddouS. MathyC.J.P. GaultonA. MannersE.J. FélixE. ShiY. GoffM. LimJ.K. McBrideT. O’NealM.C. CaiY. ChangJ.C.J. BroadhurstD.J. KlippstenS. De wit, E.; Leach, A.R.; Kortemme, T.; Shoichet, B.; Ott, M.; Saez-Rodriguez, J.; tenOever, B.R.; Mullins, R.D.; Fischer, E.R.; Kochs, G.; Grosse, R.; García-Sastre, A.; Vignuzzi, M.; Johnson, J.R.; Shokat, K.M.; Swaney, D.L.; Beltrao, P.; Krogan, N.J. The global phosphorylation landscape of SARS-CoV-2 infection.Cell20201823685712.e1910.1016/j.cell.2020.06.034 32645325
    [Google Scholar]
  81. WyattP.G. WoodheadA.J. BerdiniV. BoulstridgeJ.A. CarrM.G. CrossD.M. DavisD.J. DevineL.A. EarlyT.R. FeltellR.E. LewisE.J. McMenaminR.L. NavarroE.F. O’BrienM.A. O’ReillyM. ReuleM. SaxtyG. SeaversL.C.A. SmithD.M. SquiresM.S. TrewarthaG. WalkerM.T. WoolfordA.J.A. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design.J. Med. Chem.200851164986499910.1021/jm800382h 18656911
    [Google Scholar]
  82. FloresO. LeeG. KesslerJ. MillerM. SchliefW. TomassiniJ. HazudaD. Host-cell positive transcription elongation factor b kinase activity is essential and limiting for HIV type 1 replication.Proc. Natl. Acad. Sci. USA199996137208721310.1073/pnas.96.13.7208 10377393
    [Google Scholar]
  83. BuchmannB. DöhnerK. SchirdewahnT. SodeikB. MannsM.P. WedemeyerH. CiesekS. von HahnT. A screening assay for the identification of host cell requirements and antiviral targets for hepatitis D virus infection.Antiviral Res.201714111612310.1016/j.antiviral.2017.02.008 28223128
    [Google Scholar]
  84. DuanQ. ReidS.P. ClarkN.R. WangZ. FernandezN.F. RouillardA.D. ReadheadB. TritschS.R. HodosR. HafnerM. NiepelM. SorgerP.K. DudleyJ.T. BavariS. PanchalR.G. Ma’ayanA. L1000CDS2: LINCS L1000 characteristic direction signatures search engine.NPJ Syst. Biol. Appl.2016211601510.1038/npjsba.2016.15 28413689
    [Google Scholar]
  85. MaX. ZhuT. GuQ. XiR. WangW. LiD. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23.J. Ocean Univ. China20141361067107010.1007/s11802‑014‑2324‑z
    [Google Scholar]
  86. Sánchez-MartínezC. LallenaM.J. SanfelicianoS.G. de DiosA. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019).Bioorg. Med. Chem. Lett.2019292012663710.1016/j.bmcl.2019.126637 31477350
    [Google Scholar]
  87. ChengW. YangZ. WangS. LiY. WeiH. TianX. KanQ. Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures.Eur. J. Med. Chem.201916461563910.1016/j.ejmech.2019.01.003 30639897
    [Google Scholar]
  88. WangY. ChenX. YanY. ZhuX. LiuM. LiuX. Discovery and SARs of 5-Chloro- N4 -phenyl- N2 -(pyridin-2-yl)pyrimidine-2,4-diamine derivatives as oral available and dual CDK 6 and 9 inhibitors with potent antitumor activity.J. Med. Chem.20206363327334710.1021/acs.jmedchem.9b02121 32129996
    [Google Scholar]
  89. SuM. ChenY. QiS. ShiD. FengL. SunD. A mini-review on cell cycle regulation of coronavirus infection.Front. Vet. Sci.2020758682610.3389/fvets.2020.586826 33251267
    [Google Scholar]
  90. SurjitM. LiuB. ChowV.T.K. LalS.K. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells.J. Biol. Chem.200628116106691068110.1074/jbc.M509233200 16431923
    [Google Scholar]
  91. SuiL. LiL. ZhaoY. ZhaoY. HaoP. GuoX. WangW. WangG. LiC. LiuQ. Host cell cycle checkpoint as antiviral target for SARS-CoV-2 revealed by integrative transcriptome and proteome analyses.Signal Transduct. Target. Ther.2023812110.1038/s41392‑022‑01296‑1 36596760
    [Google Scholar]
  92. GuoS. LeiX. ChangY. ZhaoJ. WangJ. DongX. LiuQ. ZhangZ. WangL. YiD. MaL. LiQ. ZhangY. DingJ. LiangC. LiX. GuoF. WangJ. CenS. SARS-CoV-2 hijacks cellular kinase CDK2 to promote viral RNA synthesis.Signal Transduct. Target. Ther.20227140010.1038/s41392‑022‑01239‑w 36575184
    [Google Scholar]
  93. XiaoY. YanY. ChangL. JiH. SunH. SongS. FengK. NuermaimaitiA. LuZ. WangL. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation.Antiviral Res.202321210555810.1016/j.antiviral.2023.105558 36806814
    [Google Scholar]
  94. JiX.Y. ChenJ.H. ZhengG.H. HuangM.H. ZhangL. YiH. JinJ. JiangJ.D. PengZ.G. LiZ.R. Design and synthesis of cajanine analogues against hepatitis C virus through down-regulating host chondroitin sulfate N -Acetylgalactosaminyltransferase 1.J. Med. Chem.20165922102681028410.1021/acs.jmedchem.6b01301 27783522
    [Google Scholar]
  95. HeY. ZhouJ. GaoH. LiuC. ZhanP. LiuX. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses.Eur. J. Med. Chem.202426511606910.1016/j.ejmech.2023.116069 38160620
    [Google Scholar]
  96. ZhouS. WangK. HuZ. ChenT. DongY. GaoR. WuM. LiY. JiX. Design, synthesis, and structure-activity relationships of a novel class of quinazoline derivatives as coronavirus inhibitors.Eur. J. Med. Chem.202326111583110.1016/j.ejmech.2023.115831 37813064
    [Google Scholar]
  97. ShavakhiA. MinakariM. BighamianA. SadeghianS. ShavakhiS. KhamisiN. KhodadustanM. TalebiM. AtaeiB. Statin efficacy in the treatment of hepatitis C genotype I.J. Res. Med. Sci.201419Suppl. 1S1S4 25002886
    [Google Scholar]
  98. RustgiV.K. LeeW.M. LawitzE. GordonS.C. AfdhalN. PoordadF. BonkovskyH.L. BengtssonL. ChandorkarG. HardingM. McNairL. AalysonM. AlamJ. KauffmanR. GharakhanianS. McHutchisonJ.G. Merimepodib, pegylated interferon, and ribavirin in genotype 1 chronic hepatitis C pegylated interferon and ribavirin nonresponders.Hepatology20095061719172610.1002/hep.23204 19852040
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575311618240820103549
Loading
/content/journals/mrmc/10.2174/0113895575311618240820103549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test