Skip to content
2000
Volume 25, Issue 2
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Parkinson’s Disease (PD) is the most common neurodegenerative disorder after Alzheimer’s Disease and is clinically expressed by movement disorders, such as tremor, bradykinesia, and rigidity. It occurs mainly in the extrapyramidal system of the brain and is characterized by dopaminergic neuron degeneration. L-DOPA, dopaminergic agonists, anticholinergic drugs, and MAO-B inhibitors are currently used as therapeutic agents against PD, however, they have only symptomatic efficacy, mainly due to the complex pathophysiology of the disease. This review summarizes the main aspects of PD pathology, as well as, discusses the most important biochemical dysfunctions during PD, and presents novel multi-targeting compounds, which have been tested for their activity against various targets related to PD. This review selects various research articles from main databases concerning multi-targeting compounds against PD. Molecules targeting more than one biochemical pathway involved in PD, expected to be more effective than the current treatment options, are discussed. A great number of research groups have designed novel compounds following the multi-targeting drug approach. They include structures combining antioxidant, anti-inflammatory, and metal-chelating properties. These compounds could be proven useful for effective multi-targeted PD treatment. Multi-targeting drugs could be a useful tool for the design of effective antiparkinson agents. Their efficacy towards various targets implicated in PD could be the key to the radical treatment of this neurodegenerative disorder.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575303788240606054620
2024-06-24
2025-01-08
Loading full text...

Full text loading...

References

  1. ReichS.G. SavittJ.M. Parkinson’s disease.Med. Clin. North Am.2019103233735010.1016/j.mcna.2018.10.014 30704685
    [Google Scholar]
  2. RazaC. AnjumR. ShakeelN.A. Parkinson’s disease: Mechanisms, translational models and management strategies.Life Sci.2019226779010.1016/j.lfs.2019.03.057 30980848
    [Google Scholar]
  3. MichelP.P. HirschE.C. HunotS. Understanding dopaminergic cell death pathways in Parkinson disease.Neuron201690467569110.1016/j.neuron.2016.03.038 27196972
    [Google Scholar]
  4. LiS. DongJ. ChengC. LeW. Therapies for Parkinson’s diseases: Alternatives to current pharmacological interventions.J. Neural Transm. (Vienna)2016123111279129910.1007/s00702‑016‑1603‑9 27515029
    [Google Scholar]
  5. DamierP. HirschE.C. AgidY. GraybielA.M. The substantia nigra of the human brain.Brain199912281437144810.1093/brain/122.8.1437 10430830
    [Google Scholar]
  6. DauerW. PrzedborskiS. Parkinson’s disease.Neuron200339688990910.1016/S0896‑6273(03)00568‑3 12971891
    [Google Scholar]
  7. DawsonT.M. DawsonV.L. Rare genetic mutations shed light on the pathogenesis of Parkinson disease.J. Clin. Invest.2003111214515110.1172/JCI200317575 12531866
    [Google Scholar]
  8. TaymansJ.M. NkilizaA. Chartier-HarlinM.C. Deregulation of protein translation control, a potential game-changing hypothesis for Parkinson’s disease pathogenesis.Trends Mol. Med.201521846647210.1016/j.molmed.2015.05.004 26091824
    [Google Scholar]
  9. EriksenJ.L. WszolekZ. PetrucelliL. Molecular pathogenesis of Parkinson disease.Arch. Neurol.200562335335710.1001/archneur.62.3.353 15767499
    [Google Scholar]
  10. BrichtaL. GreengardP. FlajoletM. Advances in the pharmacological treatment of Parkinson’s disease: Targeting neurotransmitter systems.Trends Neurosci.201336954355410.1016/j.tins.2013.06.003 23876424
    [Google Scholar]
  11. SorrentinoZ.A. GiassonB.I. ChakrabartyP. α-Synuclein and astrocytes: Tracing the pathways from homeostasis to neurodegeneration in Lewy body disease.Acta Neuropathol.2019138112110.1007/s00401‑019‑01977‑2 30798354
    [Google Scholar]
  12. HallidayG.M. HoltonJ.L. ReveszT. DicksonD.W. Neuropathology underlying clinical variability in patients with synucleinopathies.Acta Neuropathol.2011122218720410.1007/s00401‑011‑0852‑9 21720849
    [Google Scholar]
  13. FereshtehnejadS.M. YaoC. PelletierA. MontplaisirJ.Y. GagnonJ.F. PostumaR.B. Evolution of prodromal Parkinson’s disease and dementia with Lewy bodies: A prospective study.Brain201914272051206710.1093/brain/awz111 31111143
    [Google Scholar]
  14. GoedertM. SpillantiniM.G. Del TrediciK. BraakH. 100 years of Lewy pathology.Nat. Rev. Neurol.201391132410.1038/nrneurol.2012.242 23183883
    [Google Scholar]
  15. LillC.M. Genetics of Parkinson’s disease.Mol. Cell. Probes201630638639610.1016/j.mcp.2016.11.001 27818248
    [Google Scholar]
  16. BurréJ. The synaptic function of α-syn.J. Parkinsons Dis.20155469971310.3233/JPD‑150642 26407041
    [Google Scholar]
  17. BartelsT. ChoiJ. SelkoeD. α-Synuclein occurs physiologiccaly as a helically folded tetramer that resits aggreagation.Nature201147710711010.1038/nature10324 21841800
    [Google Scholar]
  18. VilarM. ChouH.T. LührsT. MajiS.K. Riek-LoherD. VerelR. ManningG. StahlbergH. RiekR. The fold of α-synuclein fibrils.Proc. Natl. Acad. Sci. USA2008105258637864210.1073/pnas.0712179105 18550842
    [Google Scholar]
  19. GalvagnionC. BuellA.K. MeislG. MichaelsT.C.T. VendruscoloM. KnowlesT.P.J. DobsonC.M. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation.Nat. Chem. Biol.201511322923410.1038/nchembio.1750 25643172
    [Google Scholar]
  20. TuttleM.D. ComellasG. NieuwkoopA.J. CovellD.J. BertholdD.A. KloepperK.D. CourtneyJ.M. KimJ.K. BarclayA.M. KendallA. WanW. StubbsG. SchwietersC.D. LeeV.M.Y. GeorgeJ.M. RienstraC.M. Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein.Nat. Struct. Mol. Biol.201623540941510.1038/nsmb.3194 27018801
    [Google Scholar]
  21. ChitiF. DobsonC.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade.Annu. Rev. Biochem.2017861276810.1146/annurev‑biochem‑061516‑045115 28498720
    [Google Scholar]
  22. PengC. GathaganR.J. CovellD.J. MedellinC. StieberA. RobinsonJ.L. ZhangB. PitkinR.M. OlufemiM.F. LukK.C. TrojanowskiJ.Q. LeeV.M.Y. Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies.Nature2018557770655856310.1038/s41586‑018‑0104‑4 29743672
    [Google Scholar]
  23. BraakH. TrediciK.D. RübU. de VosR.A.I. Jansen SteurE.N.H. BraakE. Staging of brain pathology related to sporadic Parkinson’s disease.Neurobiol. Aging200324219721110.1016/S0197‑4580(02)00065‑9 12498954
    [Google Scholar]
  24. KramerM.L. Schulz-SchaefferW.J. Presynaptic α-synuclein aggregates, not lewy bodies, cause neurodegeneration in dementia with Lewy bodies.J. Neurosci.20072761405141010.1523/JNEUROSCI.4564‑06.2007 17287515
    [Google Scholar]
  25. SoficE. RiedererP. HeinsenH. BeckmannH. ReynoldsG.P. HebenstreitG. YoudimM.B.H. Increased iron (III) and total iron content in post mortem substantia nigra of Parkinsonian brain.J. Neural Transm. (Vienna)198874319920510.1007/BF01244786 3210014
    [Google Scholar]
  26. DexterD.T. WellsF.R. LeeA.J. AgidF. AgidY. JennerP. MarsdenC.D. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease.J. Neurochem.19895261830183610.1111/j.1471‑4159.1989.tb07264.x 2723638
    [Google Scholar]
  27. HirschE.C. BrandelJ.P. GalleP. Javoy-AgidF. AgidY. Iron and aluminum increase in the substantia nigra of patients with Parkinson’s disease: An X-ray microanalysis.J. Neurochem.199156244645110.1111/j.1471‑4159.1991.tb08170.x 1988548
    [Google Scholar]
  28. XuJ. KaoS.Y. LeeF.J.S. SongW. JinL.W. YanknerB.A. Dopamine-dependent neurotoxicity of α-synuclein: A mechanism for selective neurodegeneration in Parkinson disease.Nat. Med.20028660060610.1038/nm0602‑600 12042811
    [Google Scholar]
  29. DiasV. JunnE. MouradianM.M. The role of oxidative stress in Parkinson’s disease.J. Parkinsons Dis.20133446149110.3233/JPD‑130230 24252804
    [Google Scholar]
  30. StockwellB.R. Friedmann AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.021 28985560
    [Google Scholar]
  31. DevosD. MoreauC. DevedjianJ.C. KluzaJ. PetraultM. LalouxC. JonneauxA. RyckewaertG. GarçonG. RouaixN. DuhamelA. JissendiP. DujardinK. AugerF. RavasiL. HopesL. GrolezG. FirdausW. SablonnièreB. Strubi-VuillaumeI. ZahrN. DestéeA. CorvolJ.C. PöltlD. LeistM. RoseC. DefebvreL. MarchettiP. CabantchikZ.I. BordetR. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease.Antioxid. Redox Signal.201421219521010.1089/ars.2013.5593 24251381
    [Google Scholar]
  32. LeeD.W. AndersenJ.K. Iron elevations in the aging Parkinsonian brain: A consequence of impaired iron homeostasis?J. Neurochem.2010112233233910.1111/j.1471‑4159.2009.06470.x 20085612
    [Google Scholar]
  33. MaZ. ZhouY. XieJ. Nifedipine prevents iron accumulation and reverses iron-overload-induced dopamine neuron degeneration in the substantia nigra of rats.Neurotox. Res.201222427427910.1007/s12640‑012‑9309‑8 22259026
    [Google Scholar]
  34. CarvajalF.J. MattisonH.A. CerpaW. Role of NMDA receptor-mediated glutamatergic signaling in chronic and acute neuropathologies.Neural Plast.2016201612010.1155/2016/2701526 27630777
    [Google Scholar]
  35. BinolfiA. RasiaR.M. BertonciniC.W. CeolinM. ZweckstetterM. GriesingerC. JovinT.M. FernándezC.O. Interaction of alpha-synuclein with divalent metal ions reveals key differences: A link between structure, binding specificity and fibrillation enhancement.J. Am. Chem. Soc.2006128309893990110.1021/ja0618649 16866548
    [Google Scholar]
  36. BarrettP.J. Timothy GreenamyreJ. Post-translational modification of α-synuclein in Parkinsons disease.Brain Res.20151628Pt B24725310.1016/j.brainres.2015.06.002 26080075
    [Google Scholar]
  37. KontoghiorghesG.J. KontoghiorgheC.N. KontoghiorghesG.J. New targeted therapies and diagnostic methods for iron overload diseases.Front. Biosci. (Schol. Ed.)201810149810.2741/s498 28930516
    [Google Scholar]
  38. ReedT.T. Lipid peroxidation and neurodegenerative disease.Free Radic. Biol. Med.20115171302131910.1016/j.freeradbiomed.2011.06.027 21782935
    [Google Scholar]
  39. RamalingamM. KimS.J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases.J. Neural Transm.2012119889191010.1007/s00702‑011‑0758‑7 22212484
    [Google Scholar]
  40. PrzedborskiS. Pathogenesis of nigral cell death in Parkinson’s disease.Parkinsonism Relat. Disord.200511Suppl. 1S3S710.1016/j.parkreldis.2004.10.012 15885625
    [Google Scholar]
  41. JennerP. OlanowC.W. The pathogenesis of cell death in Parkinson’s disease.Neurology20066610_suppl_4S24S3610.1212/WNL.66.10_suppl_4.S24 16717250
    [Google Scholar]
  42. CairnsR.A. HarrisI.S. MakT.W. Regulation of cancer cell metabolism.Nat. Rev. Cancer2011112859510.1038/nrc2981 21258394
    [Google Scholar]
  43. BrookesP.S. YoonY. RobothamJ.L. AndersM.W. SheuS.S. Calcium, ATP, and ROS: A mitochondrial love-hate triangle.Am. J. Physiol. Cell Physiol.20042874C817C83310.1152/ajpcell.00139.2004 15355853
    [Google Scholar]
  44. LambethJ.D. NOX enzymes and the biology of reactive oxygen.Nat. Rev. Immunol.20044318118910.1038/nri1312 15039755
    [Google Scholar]
  45. ReeveA.K. GradyJ.P. CosgraveE.M. BennisonE. ChenC. HepplewhiteP.D. MorrisC.M. Mitochondrial dysfunction within the synapses of substantia nigra neurons in Parkinson’s disease.NPJ Parkinsons Dis.201841910.1038/s41531‑018‑0044‑6 29872690
    [Google Scholar]
  46. ChoiD.H. CristóvãoA.C. GuhathakurtaS. LeeJ. JohT.H. BealM.F. KimY.S. NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson’s disease.Antioxid. Redox Signal.201216101033104510.1089/ars.2011.3960 22098189
    [Google Scholar]
  47. ZawadaW.M. BanningerG.P. ThorntonJ. MarriottB. CantuD. RachubinskiA.L. DasM. GriffinW.S.T. JonesS.M. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade.J. Neuroinflammation20118112910.1186/1742‑2094‑8‑129 21975039
    [Google Scholar]
  48. AhujaM. Ammal KaideryN. YangL. CalingasanN. SmirnovaN. GaisinA. GaisinaI.N. GazaryanI. HushpulianD.M. Kaddour-DjebbarI. BollagW.B. MorganJ.C. RatanR.R. StarkovA.A. BealM.F. ThomasB. Distinct Nrf2 signaling mechanisms of fumaric acid esters and their role in neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental Parkinson’s-like disease.J. Neurosci.201636236332635110.1523/JNEUROSCI.0426‑16.2016 27277809
    [Google Scholar]
  49. ZhangM. AnC. GaoY. LeakR.K. ChenJ. ZhangF. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection.Prog. Neurobiol.2013100304710.1016/j.pneurobio.2012.09.003 23025925
    [Google Scholar]
  50. SawickiK.T. ChangH.C. ArdehaliH. Role of heme in cardiovascular physiology and disease.J. Am. Heart Assoc.201541e00113810.1161/JAHA.114.001138 25559010
    [Google Scholar]
  51. LeeI.S. LimJ. GalJ. KangJ.C. KimH.J. KangB.Y. ChoiH.J. Anti-inflammatory activity of xanthohumol involves heme oxygenase-1 induction via NRF2-ARE signaling in microglial BV2 cells.Neurochem. Int.201158215316010.1016/j.neuint.2010.11.008 21093515
    [Google Scholar]
  52. SchipperH.M. SongW. ZukorH. HascaloviciJ.R. ZeligmanD. Heme oxygenase‐1 and neurodegeneration: Expanding frontiers of engagement.J. Neurochem.2009110246948510.1111/j.1471‑4159.2009.06160.x 19457088
    [Google Scholar]
  53. KordowerJ.H. OlanowC.W. DodiyaH.B. ChuY. BeachT.G. AdlerC.H. HallidayG.M. BartusR.T. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease.Brain201313682419243110.1093/brain/awt192 23884810
    [Google Scholar]
  54. GalluzziL. VitaleI. AaronsonS.A. AbramsJ.M. AdamD. AgostinisP. AlnemriE.S. AltucciL. AmelioI. AndrewsD.W. Annicchiarico-PetruzzelliM. AntonovA.V. AramaE. BaehreckeE.H. BarlevN.A. BazanN.G. BernassolaF. BertrandM.J.M. BianchiK. BlagosklonnyM.V. BlomgrenK. BornerC. BoyaP. BrennerC. CampanellaM. CandiE. Carmona-GutierrezD. CecconiF. ChanF.K.M. ChandelN.S. ChengE.H. ChipukJ.E. CidlowskiJ.A. CiechanoverA. CohenG.M. ConradM. Cubillos-RuizJ.R. CzabotarP.E. D’AngiolellaV. DawsonT.M. DawsonV.L. De LaurenziV. De MariaR. DebatinK.M. DeBerardinisR.J. DeshmukhM. Di DanieleN. Di VirgilioF. DixitV.M. DixonS.J. DuckettC.S. DynlachtB.D. El-DeiryW.S. ElrodJ.W. FimiaG.M. FuldaS. García-SáezA.J. GargA.D. GarridoC. GavathiotisE. GolsteinP. GottliebE. GreenD.R. GreeneL.A. GronemeyerH. GrossA. HajnoczkyG. HardwickJ.M. HarrisI.S. HengartnerM.O. HetzC. IchijoH. JäätteläM. JosephB. JostP.J. JuinP.P. KaiserW.J. KarinM. KaufmannT. KeppO. KimchiA. KitsisR.N. KlionskyD.J. KnightR.A. KumarS. LeeS.W. LemastersJ.J. LevineB. LinkermannA. LiptonS.A. LockshinR.A. López-OtínC. LoweS.W. LueddeT. LugliE. MacFarlaneM. MadeoF. MalewiczM. MalorniW. ManicG. MarineJ.C. MartinS.J. MartinouJ.C. MedemaJ.P. MehlenP. MeierP. MelinoS. MiaoE.A. MolkentinJ.D. MollU.M. Muñoz-PinedoC. NagataS. NuñezG. OberstA. OrenM. OverholtzerM. PaganoM. PanaretakisT. PasparakisM. PenningerJ.M. PereiraD.M. PervaizS. PeterM.E. PiacentiniM. PintonP. PrehnJ.H.M. PuthalakathH. RabinovichG.A. RehmM. RizzutoR. RodriguesC.M.P. RubinszteinD.C. RudelT. RyanK.M. SayanE. ScorranoL. ShaoF. ShiY. SilkeJ. SimonH.U. SistiguA. StockwellB.R. StrasserA. SzabadkaiG. TaitS.W.G. TangD. TavernarakisN. ThorburnA. TsujimotoY. TurkB. Vanden BergheT. VandenabeeleP. Vander HeidenM.G. VillungerA. VirginH.W. VousdenK.H. VucicD. WagnerE.F. WalczakH. WallachD. WangY. WellsJ.A. WoodW. YuanJ. ZakeriZ. ZhivotovskyB. ZitvogelL. MelinoG. KroemerG. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018.Cell Death Differ.201825348654110.1038/s41418‑017‑0012‑4 29362479
    [Google Scholar]
  55. Luna-VargasM.P.A. ChipukJ.E. Physiological and pharmacological control of BAK, BAX and beyond.Trends Cell Biol.2016261290691710.1016/j.tcb.2016.07.002 27498846
    [Google Scholar]
  56. TummersB. GreenD.R. Caspase‐8: Regulating life and death.Immunol. Rev.20172771768910.1111/imr.12541 28462525
    [Google Scholar]
  57. SeoJ. KimM.W. BaeK.H. LeeS.C. SongJ. LeeE.W. The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics.Biochem. Pharmacol.2019162214010.1016/j.bcp.2018.11.012 30452908
    [Google Scholar]
  58. YangZ. WangY. ZhangY. HeX. ZhongC.Q. NiH. ChenX. LiangY. WuJ. ZhaoS. ZhouD. HanJ. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis.Nat. Cell Biol.201820218619710.1038/s41556‑017‑0022‑y 29358703
    [Google Scholar]
  59. HuY.B. ZhangY.F. WangH. RenR.J. CuiH.L. HuangW.Y. ChengQ. ChenH.Z. WangG. MiR-425 deficiency promotes necroptosis and dopaminergic neurodegeneration in Parkinson’s disease.Cell Death Dis.201910858910.1038/s41419‑019‑1809‑5 31383850
    [Google Scholar]
  60. IzzoV. Bravo-San PedroJ.M. SicaV. KroemerG. GalluzziL. Mitochondrial permeability transition: New findings and persistent uncertainties.Trends Cell Biol.201626965566710.1016/j.tcb.2016.04.006 27161573
    [Google Scholar]
  61. PapagiouvannisG. Theodosis-NobelosP. RekkaE.A. Nipecotic acid derivatives as potent agents against neurodegeneration: A preliminary study.Molecules20222720698410.3390/molecules27206984 36296574
    [Google Scholar]
  62. LiuZ. CheungH.H. Stem cell-based therapies for Parkinson disease.Int. J. Mol. Sci.20202121806010.3390/ijms21218060 33137927
    [Google Scholar]
  63. LeeY. LeeS. ChangS.C. LeeJ. Significant roles of neuroinflammation in Parkinson’s disease: Therapeutic targets for PD prevention.Arch. Pharm. Res.201942541642510.1007/s12272‑019‑01133‑0 30830660
    [Google Scholar]
  64. EikelenboomP. van ExelE. HoozemansJ.J.M. VeerhuisR. RozemullerA.J.M. van GoolW.A. Neuroinflammation - an early event in both the history and pathogenesis of Alzheimer’s disease.Neurodegener. Dis.201071-3384110.1159/000283480 20160456
    [Google Scholar]
  65. CherayM. JosephB. Epigenetics control microglia plasticity.Front. Cell. Neurosci.20181224310.3389/fncel.2018.00243 30123114
    [Google Scholar]
  66. JandaE. BoiL. CartaA.R. Microglia phagocytosis and its regulation: A therapeutic target in Parkinson’s disease?Front. Mol. Neurosci.20181114410.3389/fnmol.2018.00144 29755317
    [Google Scholar]
  67. PisanuA. LeccaD. MulasG. WardasJ. SimbulaG. SpigaS. CartaA.R. Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-γ agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease.Neurobiol. Dis.20147128029110.1016/j.nbd.2014.08.011 25134730
    [Google Scholar]
  68. BernardinelliY. RandallJ. JanettE. NikonenkoI. KönigS. JonesE.V. FloresC.E. MuraiK.K. BochetC.G. HoltmaatA. MullerD. Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability.Curr. Biol.201424151679168810.1016/j.cub.2014.06.025 25042585
    [Google Scholar]
  69. LiddelowS.A. BarresB.A. Reactive astrocytes: Production, function, and therapeutic potential.Immunity201746695796710.1016/j.immuni.2017.06.006 28636962
    [Google Scholar]
  70. AndersonM.A. BurdaJ.E. RenY. AoY. O’SheaT.M. KawaguchiR. CoppolaG. KhakhB.S. DemingT.J. SofroniewM.V. Astrocyte scar formation aids central nervous system axon regeneration.Nature2016532759819520010.1038/nature17623 27027288
    [Google Scholar]
  71. FrancoR. Fernández-SuárezD. Alternatively activated microglia and macrophages in the central nervous system.Prog. Neurobiol.2015131658610.1016/j.pneurobio.2015.05.003 26067058
    [Google Scholar]
  72. LeeK.W. WooJ.M. Im, J.Y.; Park, E.S.; He, L.; Ichijo, H.; Junn, E.; Mouradian, M.M. Apoptosis signal-regulating kinase 1 modulates the phenotype of α-synuclein transgenic mice.Neurobiol. Aging201536151952610.1016/j.neurobiolaging.2014.07.034 25219466
    [Google Scholar]
  73. AgarwalS. YadavA. ChaturvediR.K. Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders.Biochem. Biophys. Res. Commun.201748341166117710.1016/j.bbrc.2016.08.043 27514452
    [Google Scholar]
  74. LeeY. ChoJ.H. LeeS. LeeW. ChangS.C. ChungH.Y. MoonH.R. LeeJ. Neuroprotective effects of MHY908, a PPAR α/γ dual agonist, in a MPTP-induced Parkinson’s disease model.Brain Res.20191704475810.1016/j.brainres.2018.09.036 30273550
    [Google Scholar]
  75. RappoldP.M. TieuK. Astrocytes and therapeutics for Parkinson’s disease.Neurotherapeutics20107441342310.1016/j.nurt.2010.07.001 20880505
    [Google Scholar]
  76. KimJ. ChoiD. JeongH. KimJ. KimD.W. ChoiS.Y. ParkS.M. SuhY.H. JouI. JoeE.H. DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: A novel anti-inflammatory function of DJ-1.Neurobiol. Dis.20136011010.1016/j.nbd.2013.08.007 23969237
    [Google Scholar]
  77. ChoiS.Y. SonT.G. ParkH.R. JangY.J. OhS.B. JinB. LeeJ. Naphthazarin has a protective effect on the 1‐methyl‐4‐phenyl‐1,2,3,4‐tetrahydropyridine‐induced Parkinson’s disease model.J. Neurosci. Res.20129091842184910.1002/jnr.23061 22513651
    [Google Scholar]
  78. LeeK.M. LeeY. ChunH.J. KimA.H. KimJ.Y. LeeJ.Y. IshigamiA. LeeJ. Neuroprotective and anti‐inflammatory effects of morin in a murine model of Parkinson’s disease.J. Neurosci. Res.2016941086587810.1002/jnr.23764 27265894
    [Google Scholar]
  79. ParkA. StacyM. Disease-modifying drugs in Parkinson’s disease.Drugs201575182065207110.1007/s40265‑015‑0497‑4 26581672
    [Google Scholar]
  80. CarreraI. CacabelosR. Current drugs and potential future neuroprotective compounds for Parkinson’s disease.Curr. Neuropharmacol.201917329530610.2174/1570159X17666181127125704 30479218
    [Google Scholar]
  81. CummingsJ. Disease modification and neuroprotection in neurodegenerative disorders.Transl. Neurodegener.2017625
    [Google Scholar]
  82. FrancardoV. SchmitzY. SulzerD. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson’s disease.Exp. Neurol2017298Pt B137147
    [Google Scholar]
  83. LiuC.Y. LeeB. BoulisN. RezaiA.R. Introduction: Neurorestoration: Re-animating the CNS.Neurosurg. Focus2016405E110.3171/2016.2.FOCUS1688 27132522
    [Google Scholar]
  84. CacciaC. MajR. CalabresiM. MaestroniS. FaravelliL. CuratoloL. SalvatiP. FarielloR.G. Safinamide.Neurology2006677_suppl_2)(Suppl. 2S18S2310.1212/WNL.67.7_suppl_2.S18 17030736
    [Google Scholar]
  85. SchapiraA.H.V. StocchiF. BorgohainR. OnofrjM. BhattM. LorenzanaP. LuciniV. GiulianiR. AnandR. Long‐term efficacy and safety of safinamide as add‐on therapy in early P arkinson’s disease.Eur. J. Neurol.201320227128010.1111/j.1468‑1331.2012.03840.x 22967035
    [Google Scholar]
  86. Di StefanoA. MarinelliL. EusepiP. CiullaM. FulleS. Filippo; Magliulo, L.; Di Biase, G.; Cacciatore, I. Synthesis and biological evaluation of novel selenyl and sulfur-l-dopa derivatives as potential anti-parkinson’s disease agents.Biomolecules20199623910.3390/biom9060239 31216771
    [Google Scholar]
  87. TangY.W. ShiC.J. YangH.L. CaiP. LiuQ.H. YangX.L. KongL.Y. WangX.B. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer’s disease.Eur. J. Med. Chem.201916330731910.1016/j.ejmech.2018.11.040 30529634
    [Google Scholar]
  88. LiW. YangX. SongQ. CaoZ. ShiY. DengY. ZhangL. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease.Bioorg. Chem.20209710370710.1016/j.bioorg.2020.103707 32146176
    [Google Scholar]
  89. Di MartinoR.M.C. PruccoliL. BisiA. GobbiS. RampaA. MartinezA. PérezC. Martinez-GonzalezL. PaglioneM. Di SchiaviE. SeghettiF. TarozziA. BellutiF. Novel curcumin-diethyl fumarate hybrid as a dualistic GSK-3β inhibitor/Nrf2 inducer for the treatment of Parkinson’s disease.ACS Chem. Neurosci.202011172728274010.1021/acschemneuro.0c00363 32663009
    [Google Scholar]
  90. HirataY. ItoY. TakashimaM. YagyuK. Oh-hashiK. SuzukiH. OnoK. FurutaK. SawadaM. Novel oxindole–curcumin hybrid compound for antioxidative stress and neuroprotection.ACS Chem. Neurosci.2020111768510.1021/acschemneuro.9b00619 31799835
    [Google Scholar]
  91. LuQ. GoudaN.A. QuanG. NadaH. ElkamhawyA. LeeD. LeeC.H. ChoJ. LeeK. Novel cudraisoflavone J derivatives as potent neuroprotective agents for the treatment of Parkinson’s disease via the activation of Nrf2/HO-1 signaling.Eur. J. Med. Chem.202224211469210.1016/j.ejmech.2022.114692 36029560
    [Google Scholar]
  92. DuarteP. MichalskaP. CrismanE. CuadradoA. LeónR. Novel series of dual NRF2 inducers and selective MAO-B inhibitors for the treatment of Parkinson’s disease.Antioxidants202211224710.3390/antiox11020247 35204129
    [Google Scholar]
  93. Rodríguez-EnríquezF. ViñaD. UriarteE. FontenlaJ.A. MatosM.J. Discovery and optimization of 3-thiophenylcoumarins as novel agents against Parkinson’s disease: Synthesis, in vitro and in vivo studies.Bioorg. Chem.202010110398610.1016/j.bioorg.2020.103986 32569895
    [Google Scholar]
  94. LiuL. ChenY. ZengR.F. LiuY. XieS.S. LanJ.S. DingY. YangY.T. YangJ. ZhangT. Design and synthesis of novel 3,4-dihydrocoumarins as potent and selective monoamine oxidase-B inhibitors with the neuroprotection against Parkinson’s disease.Bioorg. Chem.202110910468510.1016/j.bioorg.2021.104685 33640631
    [Google Scholar]
  95. TripathiA.C. UpadhyayS. PaliwalS. SarafS.K. Privileged scaffolds as MAO inhibitors: Retrospect and prospects.Eur. J. Med. Chem.201814544549710.1016/j.ejmech.2018.01.003 29335210
    [Google Scholar]
  96. TaoD. WangY. BaoX.Q. YangB.B. GaoF. WangL. ZhangD. LiL. Discovery of coumarin Mannich base derivatives as multifunctional agents against monoamine oxidase B and neuroinflammation for the treatment of Parkinson’s disease.Eur. J. Med. Chem.201917320321210.1016/j.ejmech.2019.04.016 31005056
    [Google Scholar]
  97. CaoZ. WangX. ZhangT. FuX. ZhangF. ZhuJ. Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson’s disease.J. Enzyme Inhib. Med. Chem.2023381215995710.1080/14756366.2022.2159957 36728713
    [Google Scholar]
  98. NamM.H. ParkM. ParkH. KimY. YoonS. SawantV.S. ChoiJ.W. ParkJ.H. ParkK.D. MinS.J. LeeC.J. ChooH. Indole-substituted benzothiazoles and benzoxazoles as selective and reversible MAO-B inhibitors for treatment of Parkinson’s disease.ACS Chem. Neurosci.2017871519152910.1021/acschemneuro.7b00050 28332824
    [Google Scholar]
  99. HassanR.M. AboutablM.E. BozziM. El-BehairyM.F. El KerdawyA.M. SampaoleseB. DesiderioC. VincenzoniF. SciandraF. GhannamI.A.Y. Discovery of 4-benzyloxy and 4-(2-phenylethoxy) chalcone fibrate hybrids as novel PPARα agonists with anti-hyperlipidemic and antioxidant activities: Design, synthesis and in vitro/in vivo biological evaluation.Bioorg. Chem.202111510517010.1016/j.bioorg.2021.105170 34332233
    [Google Scholar]
  100. SudevanS.T. RangarajanT.M. Al-SehemiA.G. NairA.S. KoyiparambathV.P. MathewB. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase‐B inhibitors.Arch. Pharm.20223558220008410.1002/ardp.202200084 35567313
    [Google Scholar]
  101. LiS.Y. WangX.B. KongL.Y. Design, synthesis and biological evaluation of imine resveratrol derivatives as multi-targeted agents against Alzheimer’s disease.Eur. J. Med. Chem.201471364510.1016/j.ejmech.2013.10.068 24269515
    [Google Scholar]
  102. LeeS. SuhY.J. LeeY. YangS. HongD.G. ThirumalaiD. ChangS.C. ChungK.W. JungY.S. MoonH.R. ChungH.Y. LeeJ. Anti-inflammatory effects of the novel barbiturate derivative MHY2699 in an MPTP-induced mouse model of Parkinson’s disease.Antioxidants20211011185510.3390/antiox10111855 34829726
    [Google Scholar]
  103. WuJ. LiuQ. HuY. WangW. GaoX. Discovery of novel procaine‐imidazole derivative as inhibitor of monoamine oxidase‐B for potential benefit in Parkinson’s disease.ChemistrySelect2020535109281093210.1002/slct.202002303
    [Google Scholar]
  104. CarradoriS. PetzerJ.P. Novel monoamine oxidase inhibitors: A patent review (2012 - 2014).Expert Opin. Ther. Pat.201525191110
    [Google Scholar]
  105. MaqboolM. GadhaviJ. HivareP. GuptaS. HodaN. Diphenyl triazine hybrids inhibit α-synuclein fibrillogenesis: Design, synthesis and in vitro efficacy studies.Eur. J. Med. Chem.202020711270510.1016/j.ejmech.2020.112705 32961434
    [Google Scholar]
  106. AlNajjarY.T. GabrM. ElHadyA.K. SalahM. WilmsG. AbadiA.H. BeckerW. Abdel-HalimM. EngelM. Discovery of novel 6-hydroxybenzothiazole urea derivatives as dual Dyrk1A/α-synuclein aggregation inhibitors with neuroprotective effects.Eur. J. Med. Chem.202222711391110.1016/j.ejmech.2021.113911 34710745
    [Google Scholar]
  107. AbdelgawadM.A. OhJ.M. ParambiD.G.T. KumarS. MusaA. GhoneimM.M. NaylA.A. El-GhorabA.H. AhmadI. PatelH. KimH. MathewB. Development of bromo- and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson’s disease.J. Mol. Struct.2022126613354510.1016/j.molstruc.2022.133545
    [Google Scholar]
  108. MathewB. ParambiD.G.T. SivasankarapillaiV.S. UddinM.S. SureshJ. MathewG.E. JoyM. MarathakamA. GuptaS.V. Perspective design of chalcones for the management of CNS disorders: A mini-review.CNS Neurol. Disord. Drug Targets201918643244510.2174/1871527318666190610111246 31187716
    [Google Scholar]
  109. PapagiouvannisG. Theodosis-NobelosP. KourounakisP.N. RekkaE.A. Multi-target directed compounds with antioxidant and/or anti-inflammatory properties as potent agents for Alzheimer’s disease.Med. Chem.202117101086110310.2174/1573406416666201013161303 33050864
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575303788240606054620
Loading
/content/journals/mrmc/10.2174/0113895575303788240606054620
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test