Skip to content
2000
Volume 24, Issue 14
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Drug discovery is a complex and iterative process, making it ideal for using artificial intelligence (AI). This paper uses a bibliometric approach to reveal AI's trend and underlying structure in drug discovery (AIDD). A total of 4310 journal articles and reviews indexed in Scopus were analyzed, revealing that AIDD has been rapidly growing over the past two decades, with a significant increase after 2017. The United States, China, and the United Kingdom were the leading countries in research output, with academic institutions, particularly the Chinese Academy of Sciences and the University of Cambridge, being the most productive. In addition, industrial companies, including both pharmaceutical and high-tech ones, also made significant contributions. Additionally, this paper thoroughly discussed the evolution and research frontiers of AIDD, which were uncovered through co-occurrence analyses of keywords using VOSviewer. Our findings highlight that AIDD is an interdisciplinary and promising research field that has the potential to revolutionize drug discovery. The comprehensive overview provided here will be of significant interest to researchers, practitioners, and policy-makers in related fields. The results emphasize the need for continued investment and collaboration in AIDD to accelerate drug discovery, reduce costs, and improve patient outcomes.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575271267231123160503
2024-08-01
2025-06-26
Loading full text...

Full text loading...

/content/journals/mrmc/10.2174/0113895575271267231123160503
Loading

  • Article Type:
    Review Article
Keyword(s): AI; artificial intelligence; bibliometric; Drug discovery; Scopus; VOSviewer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test