Skip to content
2000
image of Helicobacter Pylori-induced Duodenal Ulcer: An Experimental Animal Model for Scientific Research

Abstract

Objectives

The objective of this review is to study the duodenal ulcer caused by using experimental animal models.

Methods

Animal models play an important role in the screening of new drugs and compounds to establish their safety and effectiveness. Peptic ulcer (PU) is a heterogeneous multifactorial disorder of known and unknown etiologies and may be caused by the imbalance between the mucosal defensive forces (prostaglandin, bicarbonate, mucus) and the stomach aggressive factors {, hydrochloric acid (Hcl), and pepsin}. Researchers used various animal models to evaluate the therapeutic potential of test substances. Among these, ethanol-induced peptic ulcers, NSAID-induced peptic ulcers, and pylorus ligation-induced peptic ulcers are frequently used. In this review, we focused on the -induced peptic ulcer, as we found in many published articles that most of the peptic ulcers are due to infection. enters into the host's stomach using urease to fight against the acidic environment. It colonizes the host's gastric epithelial cells and releases effector proteins and toxins. The stomach epithelium, which is the primary interface, secretes chemokines that trigger neutrophil activation and innate immunity and contribute to clinical illnesses like ulcers and gastritis.

Result

We have discussed several animal models in detail, such as the cat model, mice model, Mongolian gerbil model, pig model, rat model, and rhesus monkey model for -induced duodenal ulcer and gastritis.

Conclusion

Our efforts have been devoted to summaries and explaining the mechanism of induced ulceration using different experimental animal models, which will help and prove to be an asset for future research.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029337470241015100428
2024-12-12
2025-05-25
Loading full text...

Full text loading...

References

  1. Satapathy T. Sen K. Sahu S. Pradhan B. Gupta A. Khan M.A. Kumar D. Satapathy A. Yadav N. Experimental animal models for gastric ulcer/peptic ulcer: An overview. J. Drug Deliv. Ther. 14 1 2024 182 189 10.22270/jddt.v14i1.6258
    [Google Scholar]
  2. Bereda G. Peptic Ulcer disease: Definition, pathophysiology, and treatment. J. Biomed. Bio. Sci. 2022 1 2 1 0
    [Google Scholar]
  3. Satapathy T. Panda P.K. Solid lipid nanoparticles: A novel carrier in drug delivery system. Res. J. Pharm. Dos. Forms Technol. 2013 5 2 56 61
    [Google Scholar]
  4. Williamson J. Helicobacter pylori: Current chemotherapy and new targets for drug design. Curr. Pharm. Des. 2001 7 5 355 392 10.2174/1381612013397979 11254894
    [Google Scholar]
  5. Srishti K. Negi O. Hota P.K. Recent development on copper-sensor and its biological applications: A review. J. Fluoresc. 2024 10.1007/s10895‑024‑03587‑y 38416283
    [Google Scholar]
  6. Ware M. Tiwari S.P. Roy A. Satapathy T. New insights into gastro-retentive floating drug delivery systems. World J. Pharma. Sci. 2013 3 1 252 270
    [Google Scholar]
  7. Malfertheiner P. Chan F.K.L. McColl K.E.L. Peptic ulcer disease. Lancet 2009 374 9699 1449 1461 10.1016/S0140‑6736(09)60938‑7 19683340
    [Google Scholar]
  8. Singh R. Prasad J. Satapathy T. Jain P. Singh S. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J. Biochem. Biophys. 2021 58 2 156 161
    [Google Scholar]
  9. Ernst P. Pappo J. Preventive and therapeutic vaccines against Helicobacter pylori: Current status and future challenges. Curr. Pharm. Des. 2000 6 15 1557 1573 10.2174/1381612003399086 10974152
    [Google Scholar]
  10. Laucirica I. García Iglesias P. Calvet X. Peptic ulcer. Med. Clin. (Barc.) 2023 161 6 260 266 10.1016/j.medcli.2023.05.008 37365037
    [Google Scholar]
  11. Dunlap J.J. Patterson S. Peptic ulcer disease. Gastroenterol. Nurs. 2019 42 5 451 454 10.1097/SGA.0000000000000478 31574075
    [Google Scholar]
  12. Ramakrishnan K. Salinas R.C. Peptic ulcer disease. Am. Fam. Physician 2007 76 7 1005 1012 17956071
    [Google Scholar]
  13. Kavitt R.T. Lipowska A.M. Anyane-Yeboa A. Gralnek I.M. Diagnosis and treatment of peptic ulcer disease. Am. J. Med. 2019 132 4 447 456 10.1016/j.amjmed.2018.12.009 30611829
    [Google Scholar]
  14. Gu H. Role of flagella in the pathogenesis of Helicobacter pylori. Curr. Microbiol. 2017 74 7 863 869 10.1007/s00284‑017‑1256‑4 28444418
    [Google Scholar]
  15. Krzyżek P. Gościniak G. Morphology of Helicobacter pylori as a result of peptidoglycan and cytoskeleton rearrangements. Prz. Gastroenterol. 2018 13 3 182 195 10.5114/pg.2018.78284 30302161
    [Google Scholar]
  16. Ruggiero P. Helicobacter pylori and inflammation. Curr. Pharm. Des. 2010 16 38 4225 4236 10.2174/138161210794519075 21184659
    [Google Scholar]
  17. Desforges J.F. Peterson W.L. Helicobacter pylori and peptic ulcer disease. N. Engl. J. Med. 1991 324 15 1043 1048 10.1056/NEJM199104113241507 2005942
    [Google Scholar]
  18. Kalali B. Mejías-Luque R. Javaheri A. Gerhard M.H. H. pylori virulence factors: Influence on immune system and pathology. Mediators Inflamm. 2014 2014 426309 10.1155/2014/426309 24587595
    [Google Scholar]
  19. Menchicchi B. Hensel A. Goycoolea F. Polysaccharides as bacterial antiadhesive agents and “smart” constituents for improved drug delivery systems against Helicobacter pylori infection. Curr. Pharm. Des. 2015 21 33 4888 4906 10.2174/1381612821666150820104028 26290206
    [Google Scholar]
  20. Nakajima S. Graham D. Hattori T. Bamba T. Strategy for treatment of Helicobacter pylori infection in adults. II. Practical policy in 2000. Curr. Pharm. Des. 2000 6 15 1515 1529 10.2174/1381612003399013 10974148
    [Google Scholar]
  21. Gisbert J.P. Calvet X. Review article: Helicobacter pylori ‐negative duodenal ulcer disease. Aliment. Pharmacol. Ther. 2009 30 8 791 815 10.1111/j.1365‑2036.2009.04105.x 19706147
    [Google Scholar]
  22. Chen Y.C. Malfertheiner P. Yu H.T. Kuo C.L. Chang Y.Y. Meng F.T. Wu Y.X. Hsiao J.L. Chen M.J. Lin K.P. Wu C.Y. Lin J.T. O’Morain C. Megraud F. Lee W.C. El-Omar E.M. Wu M.S. Liou J.M. Global prevalence of Helicobacter pylori infection and incidence of gastric cancer between 1980 and 2022. Gastroenterology 2024 166 4 605 619 10.1053/j.gastro.2023.12.022 38176660
    [Google Scholar]
  23. Kusters J.G. van Vliet A.H.M. Kuipers E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006 19 3 449 490 10.1128/CMR.00054‑05 16847081
    [Google Scholar]
  24. Sgouras D.N. Trang T.T.H. Yamaoka Y. Pathogenesis of Helicobacter pylori infection. Helicobacter 2015 20 S1 8 16 10.1111/hel.12251 26372819
    [Google Scholar]
  25. Dunne C. Dolan B. Clyne M. Factors that mediate colonization of the human stomach by Helicobacter pylori. World J. Gastroenterol. 2014 20 19 5610 5624 10.3748/wjg.v20.i19.5610 24914320
    [Google Scholar]
  26. Ansari S. Yamaoka Y. Animal models and Helicobacter pylori infection. J. Clin. Med. 2022 11 11 3141 10.3390/jcm11113141 35683528
    [Google Scholar]
  27. Esteves M.I. Schrenzel M.D. Marini R.P. Taylor N.S. Xu S. Hagen S. Feng Y. Shen Z. Fox J.G. Helicobacter pylori gastritis in cats with long-term natural infection as a model of human disease. Am. J. Pathol. 2000 156 2 709 721 10.1016/S0002‑9440(10)64774‑8 10666399
    [Google Scholar]
  28. Simpson K.W. Strauss-Ayali D. Straubinger R.K. Scanziani E. McDonough P.L. Straubinger A.F. Chang Y.F. Esteves M.I. Fox J.G. Domeneghini C. Arebi N. Calam J. Helicobacter pylori infection in the cat: evaluation of gastric colonization, inflammation and function. Helicobacter 2001 6 1 1 14 10.1046/j.1523‑5378.2001.00010.x 11328360
    [Google Scholar]
  29. Handt L.K. Fox J.G. Dewhirst F.E. Fraser G.J. Paster B.J. Yan L.L. Rozmiarek H. Rufo R. Stalis I.H. Helicobacter pylori isolated from the domestic cat: Public health implications. Infect. Immun. 1994 62 6 2367 2374 10.1128/iai.62.6.2367‑2374.1994 8188360
    [Google Scholar]
  30. Fox J.G. Batchelder M. Marini R. Yan L. Handt L. Li X. Shames B. Hayward A. Campbell J. Murphy J.C. Helicobacter pylori-induced gastritis in the domestic cat. Infect. Immun. 1995 63 7 2674 2681 10.1128/iai.63.7.2674‑2681.1995 7790084
    [Google Scholar]
  31. Otto G. Hazell S.H. Fox J.G. Howlett C.R. Murphy J.C. O’Rourke J.L. Lee A. Animal and public health implications of gastric colonization of cats by Helicobacter-like organisms. J. Clin. Microbiol. 1994 32 4 1043 1049 10.1128/jcm.32.4.1043‑1049.1994 8027308
    [Google Scholar]
  32. Fox J.G. Perkins S. Yan L. Shen Z. Attardo L. Pappo J. Local immune response in Helicobacter pylori‐ infected cats and identification of H. pylori in saliva, gastric fluid and faeces Immunology 1996 88 3 400 406 10.1046/j.1365‑2567.1996.d01‑677.x 8774357
    [Google Scholar]
  33. Neiger R. Dieterich C. Burnens A. Waldvogel A. Corthésy-Theulaz I. Halter F. Lauterburg B. Schmassmann A. Detection and prevalence of Helicobacter infection in pet cats. J. Clin. Microbiol. 1998 36 3 634 637 10.1128/JCM.36.3.634‑637.1998 9508286
    [Google Scholar]
  34. Perkins S.E. Fox J.G. Marini R.P. Shen Z. Dangler C.A. Ge Z. Experimental infection in cats with a cagA+ human isolate of Helicobacter pylori. Helicobacter 1998 3 4 225 235 10.1046/j.1523‑5378.1998.08037.x 9844063
    [Google Scholar]
  35. D’Costa K. Chonwerawong M. Tran L.S. Ferrero R.L. Mouse models Of Helicobacter infection and gastric pathologies. J. Vis. Exp. 2018 140 56985 10.3791/56985‑v 30394371
    [Google Scholar]
  36. Marchetti M. Aricò B. Burroni D. Figura N. Rappuoli R. Ghiara P. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science 1995 267 5204 1655 1658 10.1126/science.7886456 7886456
    [Google Scholar]
  37. Dey T.K. Karmakar B.C. Sarkar A. Paul S. Mukhopadhyay A.K. A mouse model of Helicobacter pylori infection. Helicobacter Pylori Humana New York Smith S.M. 2021 131 151 10.1007/978‑1‑0716‑1302‑3_14
    [Google Scholar]
  38. Lee A. O’Rourke J. De Ungria M.C. Robertson B. Daskalopoulos G. Dixon M.F. A standardized mouse model of Helicobacter pylori infection: Introducing the Sydney strain. Gastroenterology 1997 112 4 1386 1397 10.1016/S0016‑5085(97)70155‑0 9098027
    [Google Scholar]
  39. Konturek P.C. Brzozowski T. Konturek S.J. Stachura J. Karczewska E. Pajdo R. Ghiara P. Hahn E.G. Mouse model of Helicobacter pylori infection: Studies of gastric function and ulcer healing. Aliment. Pharmacol. Ther. 1999 13 3 333 346 10.1046/j.1365‑2036.1999.00476.x 10102967
    [Google Scholar]
  40. Han S.U. Kim Y.B. Joo H.J. Hahm K.B. Lee W.H. Cho Y.K. Kim D.Y. Kim M.W. Helicobacter pylori infection promotes gastric carcinogenesis in a mice model. J. Gastroenterol. Hepatol. 2002 17 3 253 261 10.1046/j.1440‑1746.2002.02684.x 11982694
    [Google Scholar]
  41. Sakagami T. Dixon M. O’Rourke J. Howlett R. Alderuccio F. Vella J. Shimoyama T. Lee A. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis. Gut 1996 39 5 639 648 10.1136/gut.39.5.639 9026476
    [Google Scholar]
  42. Crabtree J.E. Ferrero R.L. Kusters J.G. The mouse colonizing Helicobacter pylori strain SS1 may lack a functional cag pathogenicity island. Helicobacter 2002 7 2 139 140 10.1046/j.1083‑4389.2002.00071.x 11966874
    [Google Scholar]
  43. Ferrero R.L. Wilson J.E. Sutton P. Mouse models of Helicobacter-induced gastric cancer: Use of cocarcinogens. Helicobacter Species Humana Press Totowa, NJ Houghton J. 2012 153 173 10.1007/978‑1‑62703‑005‑2_20
    [Google Scholar]
  44. Kong L. Smith J.G. Bramhill D. Abruzzo G.K. Bonfiglio C. Cioffe C. Flattery A.M. Gill C.J. Lynch L. Scott P.M. Silver L. Thompson C. Kropp H. Bartizal K. A sensitive and specific PCR method to detect Helicobacter felis in a conventional mouse model. Clin. Diagn. Lab. Immunol. 1996 3 1 73 78 10.1128/cdli.3.1.73‑78.1996 8770507
    [Google Scholar]
  45. Matsumoto S. Washizuka Y. Matsumoto Y. Tawara S. Ikeda F. Yokota Y. Karita M. Induction of ulceration and severe gastritis in Mongolian gerbil by Helicobacter pylori infection. J. Med. Microbiol. 1997 46 5 391 397 10.1099/00222615‑46‑5‑391 9152034
    [Google Scholar]
  46. Noto J.M. Romero-Gallo J. Piazuelo M.B. Peek R.M. The Mongolian gerbil: A Robust model of Helicobacter pylori-induced gastric inflammation and cancer. Methods Mol. Biol. 2016 1422 263 280 10.1007/978‑1‑4939‑3603‑8_24 27246040
    [Google Scholar]
  47. Watanabe T. Tada M. Nagai H. Sasaki S. Nakao M. Helicobacter pylori infection induces gastric cancer in Mongolian gerbils. Gastroenterology 1998 115 3 642 648 10.1016/S0016‑5085(98)70143‑X 9721161
    [Google Scholar]
  48. Honda S. Fujioka T. Tokieda M. Satoh R. Nishizono A. Nasu M. Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res. 1998 58 19 4255 4259 9766647
    [Google Scholar]
  49. Ogura K. Maeda S. Nakao M. Watanabe T. Tada M. Kyutoku T. Yoshida H. Shiratori Y. Omata M. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J. Exp. Med. 2000 192 11 1601 1610 10.1084/jem.192.11.1601 11104802
    [Google Scholar]
  50. Ohkusa T. Okayasu I. Miwa H. Ohtaka K. Endo S. Sato N. Helicobacter pylori infection induces duodenitis and superficial duodenal ulcer in Mongolian gerbils. Gut 2003 52 6 797 803 10.1136/gut.52.6.797 12740333
    [Google Scholar]
  51. Ikeno T. Ota H. Sugiyama A. Ishida K. Katsuyama T. Genta R.M. Kawasaki S. Helicobacter pylori-induced chronic active gastritis, intestinal metaplasia, and gastric ulcer in Mongolian gerbils. Am. J. Pathol. 1999 154 3 951 960 10.1016/S0002‑9440(10)65343‑6 10079274
    [Google Scholar]
  52. Nawa Y. Horii Y. Okada M. Arizono N. Histochemical and cytological characterizations of mucosal and connective tissue mast cells of Mongolian gerbils (Meriones unguiculatus). Int. Arch. Allergy Immunol. 1994 104 3 249 254 10.1159/000236673 8032236
    [Google Scholar]
  53. Hirayama F. Establishiment of gastric Helicobacter pylori infection model in the mongolian gerbils. The first meeting of the Japananese reserch society for Helicobacter pylori related gastroduodenal diseases 1995
    [Google Scholar]
  54. Rosberg K. Hübinette R. Nygård G. Berglindh T. Rolfsen W. Studies of Helicobacter pylori in a gastric mucosa in vitro animal model. Scand. J. Gastroenterol. 1991 26 1 43 48 10.3109/00365529108996482 2006397
    [Google Scholar]
  55. Koga T. Shimada Y. Sato K. Takahashi K. Kikuchi I. Miura T. Takenouchi T. Narita T. Iwata M. Experimental Helicobacter pylori gastric infection in miniature pigs. J. Med. Microbiol. 2002 51 3 238 246 10.1099/0022‑1317‑51‑3‑238 11871619
    [Google Scholar]
  56. Bertram T.A. Krakowka S. Morgan D.R. Gastritis associated with infection by Helicobacter pylori: Comparative pathology in humans and swine. Clin. Infect. Dis. 1991 13 Suppl. 8 S714 S722 10.1093/clinids/13.Supplement_8.S714 1925315
    [Google Scholar]
  57. McColm A.A. Nonprimate animal models of H. pylori infection. Helicobacter pylori Protocols Humana Press Clayton C.L. Mobley H.L.T. 1997 235 251
    [Google Scholar]
  58. Kronsteiner B. Bassaganya-Riera J. Philipson C. Viladomiu M. Carbo A. Pedragosa M. Vento S. Hontecillas R. Helicobacter pylori infection in a pig model is dominated by Th1 and cytotoxic CD8+ T cell responses. Infect. Immun. 2013 81 10 3803 3813 10.1128/IAI.00660‑13 23897614
    [Google Scholar]
  59. Krakowka S. Morgan D.R. Kraft W.G. Leunk R.D. Establishment of gastric Campylobacter pylori infection in the neonatal gnotobiotic piglet. Infect. Immun. 1987 55 11 2789 2796 10.1128/iai.55.11.2789‑2796.1987 3666963
    [Google Scholar]
  60. Lambert J.R. Borromeo M. Pinkard K.J. Turner H. Chapman C.B. Smith M.L. Colonization of gnotobiotic piglets with Campylobacter Pyloridis - An animal model? J. Infect. Dis. 1987 155 6 1344 10.1093/infdis/155.6.1344 3572046
    [Google Scholar]
  61. Li H. Kalies I. Mellgård B. Helander H.F. A rat model of chronic Helicobacter pylori infection. Studies of epithelial cell turnover and gastric ulcer healing. Scand. J. Gastroenterol. 1998 33 4 370 378 10.1080/00365529850170991 9605258
    [Google Scholar]
  62. Narkhede K.P. Satapathy T. Pandit B. Protective effect of cod liver oil in experimentally induced gastric ulceration in rats. Res. J. Pharma. Technol. 2019 12 1 5 10 10.5958/0974‑360X.2019.00002.7
    [Google Scholar]
  63. Werawatganon D. Simple animal model of Helicobacter pylori infection. World J. Gastroenterol. 2014 20 21 6420 6424 10.3748/wjg.v20.i21.6420 24914363
    [Google Scholar]
  64. Thong-Ngam D. Prabjone R. Videsopas N. Chatsuwan T. A simple rat model of chronic Helicobacter pylori infection for research study. Thai J. Gastroenterol. 2005 6 1 3 7
    [Google Scholar]
  65. Fox J.G. Lee A. Otto G. Taylor N.S. Murphy J.C. Helicobacter felis gastritis in gnotobiotic rats: An animal model of Helicobacter pylori gastritis. Infect. Immun. 1991 59 3 785 791 10.1128/iai.59.3.785‑791.1991 1997430
    [Google Scholar]
  66. Valadbeigi H. Khoshnood S. Negahdari B. Abdullah M.A. Haddadi M.H. Antibacterial and immunoregulatory effects of metformin against Helicobacter pylori infection in rat model. BioMed Res. Int. 2023 2023 1 5583286 10.1155/2023/5583286 38192437
    [Google Scholar]
  67. Santhosh Kumar B. Tiwari S.K. Saikant R. Manoj G. Kunwar A. Sivaram G. Abid Z. Ahmad A. Priyadarsini K.I. Khan A.A. Antibacterial and ulcer healing effects of organoselenium compounds in naproxen induced and Helicobacter pylori infected Wistar rat model. J. Trace Elem. Med. Biol. 2010 24 4 263 270 10.1016/j.jtemb.2010.04.003 20678908
    [Google Scholar]
  68. Dubois A. Berg D.E. Incecik E.T. Fiala N. Heman-Ackah L.M. Perez-Perez G.I. Blaser M.J. Transient and persistent experimental infection of nonhuman primates with Helicobacter pylori: Implications for human disease. Infect. Immun. 1996 64 8 2885 2891 10.1128/iai.64.8.2885‑2891.1996 8757808
    [Google Scholar]
  69. Mysore J.V. Wigginton T. Simon P.M. Zopf D. Heman-Ackah L.M. Dubois A. Treatment of Helicobacter pylori infection in rhesus monkeys using a novel antiadhesion compound. Gastroenterology 1999 117 6 1316 1325 10.1016/S0016‑5085(99)70282‑9 10579973
    [Google Scholar]
  70. Fukuda Y. Tamura K. Yamamoto I. Kawaura A. Tonokatsu Y. Tsuyuguchi T. Ohno T. Satomi M. Shimoyama T. Inoculation of Rhesus Monkeys with human Helicobacter pylori: A long‐term investigation on gastric mucosa by endoscopy. Dig. Endosc. 1992 4 1 19 30 10.1111/j.1443‑1661.1992.tb00222.x
    [Google Scholar]
  71. Hornsby M.J. Huff J.L. Kays R.J. Canfield D.R. Bevins C.L. Solnick J.V. Helicobacter pylori induces an antimicrobial response in rhesus macaques in a cag pathogenicity island-dependent manner. Gastroenterology 2008 134 4 1049 1057 10.1053/j.gastro.2008.01.018 18395086
    [Google Scholar]
  72. Mattapallil J.J. Dandekar S. Canfield D.R. Solnick J.V. A predominant Th1 type of immune response is induced early during acute Helicobacter pylori infection in rhesus macaques. Gastroenterology 2000 118 2 307 315 10.1016/S0016‑5085(00)70213‑7 10648459
    [Google Scholar]
  73. Solnick J.V. Canfield D.R. Yang S. Parsonnet J. Rhesus monkey (Macaca mulatta) model of Helicobacter pylori: Noninvasive detection and derivation of specific-pathogen-free monkeys. Lab. Anim. Sci. 1999 49 2 197 201 10331550
    [Google Scholar]
  74. Handt L.K. Fox J.G. Yan L.L. Shen Z. Pouch W.J. Ngai D. Motzel S.L. Nolan T.E. Klein H.J. Diagnosis of Helicobacter pylori infection in a colony of rhesus monkeys (Macaca mulatta). J. Clin. Microbiol. 1997 35 1 165 168 10.1128/jcm.35.1.165‑168.1997 8968900
    [Google Scholar]
  75. Siddalingam R Chidambaram K. Helicobacter pylori — Current therapy and future therapeutic strategies. Trends in Helicobacter pylori Infection IntechOpen London Roesler M. 2014 279 302 10.5772/58338
    [Google Scholar]
  76. Sipponen P Hyvärinen H. Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer. Scand. J. Gastroenterol. Suppl. 1993 196 3 6 10.3109/00365529309098333
    [Google Scholar]
  77. de Souza M.P.C. de Camargo B.A.F. Spósito L. Fortunato G.C. Carvalho G.C. Marena G.D. Meneguin A.B. Bauab T.M. Chorilli M. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Crit. Rev. Microbiol. 2021 47 4 435 460 10.1080/1040841X.2021.1895721 33725462
    [Google Scholar]
  78. Xiong M.H. Bao Y. Yang X.Z. Zhu Y.H. Wang J. Delivery of antibiotics with polymeric particles. Adv. Drug Deliv. Rev. 2014 78 63 76 10.1016/j.addr.2014.02.002 24548540
    [Google Scholar]
  79. Hearnden V. Sankar V. Hull K. Juras D.V. Greenberg M. Kerr A.R. Lockhart P.B. Patton L.L. Porter S. Thornhill M.H. New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv. Drug Deliv. Rev. 2012 64 1 16 28 10.1016/j.addr.2011.02.008 21371513
    [Google Scholar]
  80. Aamir M.N. Ahmad M. Production and stability evaluation of modified-release microparticles for the delivery of drug combinations. AAPS PharmSciTech 2010 11 1 351 355 10.1208/s12249‑010‑9392‑1 20221719
    [Google Scholar]
  81. Abuhelwa A.Y. Williams D.B. Upton R.N. Foster D.J.R. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017 112 234 248 10.1016/j.ejpb.2016.11.034 27914234
    [Google Scholar]
  82. Cun D. Zhang C. Bera H. Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv. Drug Deliv. Rev. 2021 174 140 167 10.1016/j.addr.2021.04.006 33845039
    [Google Scholar]
  83. Luo Z. Paunović N. Leroux J.C. Physical methods for enhancing drug absorption from the gastrointestinal tract. Adv. Drug Deliv. Rev. 2021 175 113814 10.1016/j.addr.2021.05.024 34052229
    [Google Scholar]
  84. Satapathy T. Panda P.K. Goyal A.K. Rath G. Evaluation of anti-GERD activity of gastro retentive drug delivery system of itopride hydrochloride. Artif. Cells Blood Substit. Immobil. Biotechnol. 2010 38 4 200 207 10.3109/10731191003776751 20515421
    [Google Scholar]
  85. Adebisi A.O. Conway B.R. Modification of drug delivery to improve antibiotic targeting to the stomach. Ther. Deliv. 2015 6 6 741 762 10.4155/tde.15.35 26149788
    [Google Scholar]
  86. Carvalho B.G. Vit F.F. Carvalho H.F. Han S.W. de la Torre L.G. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J. Mater. Chem. B Mater. Biol. Med. 2021 9 5 1208 1237 10.1039/D0TB02168G 33393582
    [Google Scholar]
  87. Satapathy T. Kaushik S. Netam A.K. Prasad J. Rao S.P. Sahu M.K. Baghel P. Nano delivery: A smart carrier for treatment of ovarian cancer. World J. Pharm. Res. 7 9 513 523 2018 10.20959/wjpr20189‑12137
    [Google Scholar]
  88. Pop R. Tăbăran A.F. Ungur A.P. Negoescu A. Cătoi C. Helicobacter Pylori-induced gastric infections: From pathogenesis to novel therapeutic approaches using silver nanoparticles. Pharmaceutics 2022 14 7 1463 10.3390/pharmaceutics14071463 35890358
    [Google Scholar]
  89. Zhu X. Su T. Wang S. Zhou H. Shi W. New advances in nano-drug delivery systems: Helicobacter pylori and gastric cancer. Front. Oncol. 2022 12 834934 10.3389/fonc.2022.834934 35619913
    [Google Scholar]
  90. Navarre W.W. Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 1999 63 1 174 229 10.1128/MMBR.63.1.174‑229.1999 10066836
    [Google Scholar]
  91. Ensign L.M. Cone R. Hanes J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 2012 64 6 557 570 10.1016/j.addr.2011.12.009 22212900
    [Google Scholar]
  92. Huang J. Shu Q. Wang L. Wu H. Wang A.Y. Mao H. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 2015 39 105 113 10.1016/j.biomaterials.2014.10.059 25477177
    [Google Scholar]
  93. Lai Y. Wei W. Du Y. Gao J. Li Z. Biomaterials for Helicobacter pylori therapy: Therapeutic potential and future perspectives. Gut Microbes 2022 14 1 2120747 10.1080/19490976.2022.2120747 36070564
    [Google Scholar]
  94. Bialer M. Extended-release formulations for the treatment of epilepsy. CNS Drugs 2007 21 9 765 774 10.2165/00023210‑200721090‑00005 17696575
    [Google Scholar]
  95. Yuan H. Chen C.Y. Chai G. Du Y.Z. Hu F.Q. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Mol. Pharm. 2013 10 5 1865 1873 10.1021/mp300649z 23495754
    [Google Scholar]
  96. Ng V.W.L. Ke X. Lee A.L.Z. Hedrick J.L. Yang Y.Y. Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv. Mater. 2013 25 46 6730 6736 10.1002/adma.201302952 24018824
    [Google Scholar]
  97. Kamankesh M. Yadegar A. Llopis-Lorente A. Liu C. Haririan I. Aghdaei H.A. Shokrgozar M.A. Zali M.R. Miri A.H. Rad-Malekshahi M. Hamblin M.R. Wacker M.G. Future nanotechnology‐based strategies for improved management of Helicobacter pylori infection. Small 2024 20 3 2302532 10.1002/smll.202302532 37697021
    [Google Scholar]
  98. Fortina P. Kricka L.J. Graves D.J. Park J. Hyslop T. Tam F. Halas N. Surrey S. Waldman S.A. Applications of nanoparticles to diagnostics and therapeutics in colorectal cancer. Trends Biotechnol. 2007 25 4 145 152 10.1016/j.tibtech.2007.02.005 17316852
    [Google Scholar]
  99. Egusquiaguirre S.P. Igartua M. Hernández R.M. Pedraz J.L. Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research. Clin. Transl. Oncol. 2012 14 2 83 93 10.1007/s12094‑012‑0766‑6 22301396
    [Google Scholar]
/content/journals/mns/10.2174/0118764029337470241015100428
Loading
/content/journals/mns/10.2174/0118764029337470241015100428
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test