Skip to content
2000
Volume 17, Issue 2
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Background

The development of more effective drug delivery techniques is necessary to increase treatment efficacy and patient compliance since tuberculosis (TB) is still a serious worldwide health concern. Ethambutol is a vital aspect of TB treatment, and using nanoparticles to carry it to the lungs may provide targeted delivery and prolonged release, which might enhance the effectiveness of the treatment.

Objective

This work aimed to optimize the formulation for prolonged drug release by synthesizing and assessing ethambutol-loaded nanoparticles using the desolation technique with albumin as the polymer. Additionally, the effects of different drug-polymer ratios and stirring rates were investigated.

Methods

Nine formulations of ethambutol-loaded nanoparticles were prepared by varying the drug-polymer ratios (1:1 to 1:2) and stirring speeds (500 to 1500 rpm). Key parameters, such as particle size, drug entrapment efficiency, and zeta potential, were measured. The optimized formulation was selected based on the smallest particle size and highest drug entrapment efficiency. Scanning electron microscopy was used to analyze the surface morphology of the nanoparticles. The drug release profile of the optimized formulation was studied over 24 hours.

Results

Increasing the drug-polymer ratio from 1:1 to 1:2 increased nanoparticle size from 192.1 nm to 605.06 nm and decreased drug entrapment efficiency from 75.7% ± 0.08 to 34% ± 0.06. Higher stirring speeds (500 to 1500 rpm) also led to larger particle sizes and reduced drug entrapment due to polymer self-aggregation. Zeta potential values ranged from -5.56 to -25.6 mV. Scanning electron microscopy confirmed smooth, spherical nanoparticles. The optimized formulation, EN-5, exhibited the smallest particle size and highest drug entrapment efficiency. drug release studies showed a sustained ethambutol release, with 42.66 ± 1.53% released in 12 hours and 79.082 ± 2.98% in 24 hours.

Conclusion

Ethambutol-loaded nanoparticles having the ability to transport drugs to the lungs over an extended period of time were developed and optimized in the study. With improved drug delivery systems, the optimized formulation showed notable drug entrapment efficiency and controlled release, suggesting its potential to improve tuberculosis therapy.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029334154240916065653
2024-10-11
2025-06-18
Loading full text...

Full text loading...

References

  1. Mireku-GyimahN. Mireku-GyimahN.A. Tuberculosis: Cellular understanding of disease.Tubercular Drug Delivery SystemsChamSpringer2023153310.1007/978‑3‑031‑14100‑3_2
    [Google Scholar]
  2. MandalS. BiswasP. AnsarW. MukherjeeP. JawedJ.J. Chapter 5 - Tuberculosis of the central nervous system: Pathogenicity and molecular mechanism.A Review on Diverse Neurological Disorders Pathophysiology, Molecular Mechanisms, and TherapeuticsAcademic Press20249310210.1016/B978‑0‑323‑95735‑9.00050‑4
    [Google Scholar]
  3. TiwariA. RajK. MishraA. MishraS. SharmaD. A systemic review on tuberculosis: Diagnosis, treatment and challenges.Int. J. Adv. Sci. Res.20211203 Suppl 2273810.55218/JASR.s2202112304
    [Google Scholar]
  4. ColemanM. NguyenT.A. LuuB.K. HillJ. RagonnetR. TrauerJ.M. FoxG.J. MarksG.B. MaraisB.J. Finding and treating both tuberculosis disease and latent infection during population-wide active case finding for tuberculosis elimination.Front. Med.202310127514010.3389/fmed.2023.127514037908846
    [Google Scholar]
  5. DartoisV.A. RubinE.J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities.Nat. Rev. Microbiol.2022201168570110.1038/s41579‑022‑00731‑y35478222
    [Google Scholar]
  6. MancusoG. MidiriA. De GaetanoS. PonzoE. BiondoC. Tackling drug-resistant tuberculosis: New challenges from the old pathogen Mycobacterium tuberculosis. Microorganisms2023119227710.3390/microorganisms1109227737764122
    [Google Scholar]
  7. MishraS. ShahH. PatelA. TripathiS.M. MalviyaR. PrajapatiB.G. Applications of bioengineered polymer in the field of nano-based drug delivery.ACS Omega202491819610.1021/acsomega.3c0735638222544
    [Google Scholar]
  8. OjhaS. Ajeet GuptaS.K. MishraS. Evaluation of in vitro antioxidant and hypoglycemic activities of methanol extract of root of Cryptolepis buchanani in streptozotocin-induced diabetic rats.Curr. Bioact. Compd.2023199e20042321614610.2174/1573407219666230420121240
    [Google Scholar]
  9. DakkahA.N. BatainehY. JaidiB.A.A. BayanM.F. NimerN.A. Nanomedicines in tuberculosis: Diagnosis, therapy and nanodrug delivery.Integrative Nanomedicine for New Therapies. Engineering Materials202035740410.1007/978‑3‑030‑36260‑7_13
    [Google Scholar]
  10. LemmerY. SemeteB. BooysenL. KalomboL. KatataL. JonesA.T. AlexanderC. KhatiM. SwaiH.S. VerschoorJ.A. Targeted nanodrug delivery systems for the treatment of tuberculosis.Drug Discov. Today20101523-241098109810.1016/j.drudis.2010.09.399
    [Google Scholar]
  11. SinghN. MaurtaR. MishraS. JainD. Preparation and evaluation of medicated formulation for dry eye.Nanosci. Nanotechnol. Asia2023134e26052321738610.2174/2210681213666230526152322
    [Google Scholar]
  12. XuJ. JiangH. LiX. XingZ. NiuQ. Intracellular activity of poly (DL-Lactide-co-Glycolide) nanoparticles encapsulated with prothionamide, pyrazinamide, levofloxacin, linezolid, or ethambutol on multidrug-resistant Mycobacterium tuberculosis. Curr. Drug Deliv.202320330631610.2174/156720181966622051112021535546770
    [Google Scholar]
  13. TanjungY. DewiM. GateraV. BarlianaM. JoniI.M. ChaerunisaaA. Factors affecting the synthesis of bovine serum albumin nanoparticles using the desolvation method.Nanotechnol. Sci. Appl.202417214010.2147/NSA.S44132438314401
    [Google Scholar]
  14. RadwanS.E.S. El-MoslemanyR.M. MehannaR.A. ThabetE.H. AbdelfattahE.Z.A. El-KamelA. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment.Drug Deliv.20222911150116310.1080/10717544.2022.205864835384774
    [Google Scholar]
  15. BanuA. KhanR.H. QashqooshM.T.A. ManeaY.K. FurkanM. NaqviS. Multispectroscopic and computational studies of interaction of bovine serum albumin, human serum albumin and bovine hemoglobin with bisacodyl.J. Mol. Struct.2022124913155010.1016/j.molstruc.2021.131550
    [Google Scholar]
  16. BanuA. NaqviS. QashqooshM.T.A. ManeaY.K. Multispectroscopic and computational study of interaction of the bovine serum albumin with atropine and atropine-loaded chitosan nanoparticles (synthesized and characterized).J. Biomol. Struct. Dyn.20234120111371114710.1080/07391102.2023.221280237211826
    [Google Scholar]
  17. NosratiH. SefidiN. SharafiA. DanafarH. KheiriH. Bovine Serum Albumin (BSA) coated iron oxide magnetic nanoparticles as biocompatible carriers for curcumin-anticancer drug.Bioorg. Chem.20187650150910.1016/j.bioorg.2017.12.03329310081
    [Google Scholar]
  18. JunJ.Y. NguyenH.H. PaikS.Y.R. ChunH.S. KangB.C. KoS. Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method.Food Chem.201112741892189810.1016/j.foodchem.2011.02.040
    [Google Scholar]
  19. Jahanban-EsfahlanA. DastmalchiS. DavaranS. A simple improved desolvation method for the rapid preparation of albumin nanoparticles.Int. J. Biol. Macromol.20169170370910.1016/j.ijbiomac.2016.05.03227177461
    [Google Scholar]
  20. Bronze-UhleE. CostaB.C. XimenesV.F. Lisboa-FilhoP.N. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid.Nanotechnol. Sci. Appl.201610112110.2147/NSA.S11701828096662
    [Google Scholar]
  21. ElsewedyH.S. DhubiabB.E.A. MahdyM.A. ElnahasH.M. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles.Drug Deliv.20202711134114610.1080/10717544.2020.179723732729331
    [Google Scholar]
  22. IriventiP. GuptaN.V. OsmaniR.A.M. BalamuralidharaV. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis.Daru202028248950610.1007/s40199‑020‑00352‑x32472531
    [Google Scholar]
  23. BanuA. NaqviS. QashqooshM.T.A. K ManeaY. LaiqE. Synthesis and characterization of bisacodyl loaded chitosan nanoparticles (BSL@CS NPs), multispectroscopic study of their interaction with bovine serum albumin (BSA).J. Mol. Liq.202338712248810.1016/j.molliq.2023.122488
    [Google Scholar]
  24. TekindalMA BayrakH ÖzkayaB YavuzY. Second-order response surface method: Factorial experiments an alternative method in the field of agronomy.Turk J Field Crops2014191354510.17557/tjfc.78787
    [Google Scholar]
  25. Fernández-BarberoG. PinedoC. Espada-BellidoE. Ferreiro-GonzálezM. CarreraC. PalmaM. García-BarrosoC. Optimization of ultrasound-assisted extraction of bioactive compounds from jabuticaba (Myrciaria cauliflora) fruit through a Box-Behnken experimental design.Food Sci. Technol. (Campinas)20193941018102910.1590/fst.16918
    [Google Scholar]
  26. FelenjiH. JohariB. MoradiM. GharbaviM. DanafarH. Folic acid-conjugated iron oxide magnetic nanoparticles based on bovine serum albumin (BSA) for targeted delivery of curcumin to suppress liver cancer cells.Chem. Africa2022551627163910.1007/s42250‑022‑00425‑1
    [Google Scholar]
  27. S LokeshB. HaloiP. KonkimallaV.B. Fabrication and optimization of BSA-PEG-loaded phenethyl isothiocyanate (PEITC) nanoparticles using Box-Behnken design for potential application in subcutaneous infection condition.J. Drug Deliv. Sci. Technol.20238010410110.1016/j.jddst.2022.104101
    [Google Scholar]
  28. NémethZ. CsókaI. S JazaniR. SiposB. HaspelH. KozmaG. KónyaZ. DobóD.G. Quality by design-driven zeta potential optimisation study of liposomes with charge imparting membrane additives.Pharmaceutics2022149179810.3390/pharmaceutics1409179836145546
    [Google Scholar]
  29. SolimanN.M. ShakeelF. HaqN. AlanaziF.K. AlshehriS. BayomiM. AlenaziA.S.M. AlsarraI.A. Development and optimization of ciprofloxacin HCl-loaded chitosan nanoparticles using box–behnken experimental design.Molecules20222714446810.3390/molecules2714446835889340
    [Google Scholar]
  30. YueP.F. LuX.Y. ZhangZ.Z. YuanH.L. ZhuW.F. ZhengQ. YangM. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion.AAPS PharmSciTech200910237638310.1208/s12249‑009‑9216‑319381837
    [Google Scholar]
  31. BelloM.A. Ruiz-LeónY. Sandoval-SierraJ.V. RezinciucS. Diéguez-UribeondoJ. Scanning electron microscopy (SEM) protocols for problematic plant, oomycete, and fungal samples.J. Vis. Exp.201720171205503110.3791/5503128190042
    [Google Scholar]
  32. ZhangN. XiaY. GuoX. WangP. YanS. LuC. CaoD. ZhangZ. Preparation, characterization, and in vitro targeted delivery of folate-conjugated 2-methoxyestradiol-loaded bovine serum albumin nanoparticles.J. Nanopart. Res.2014165239010.1007/s11051‑014‑2390‑6
    [Google Scholar]
  33. HussainM. SarmaA. RahmanS.S. SiddiqueA.M. EeswariT.P. Formulation and evaluation of ethambutol polymeric nanoparticles.Int. J. Appl. Pharm.20201220721710.22159/ijap.2020v12i4.36845
    [Google Scholar]
  34. ParasharA.K. GurdeepS. Synthesis and characterization of ligand anchored poly propyleneiminedendrimers for the treatment of brain glioma.J. Med. Pharm. Allied Sci20211032784278910.22270/jmpas.v10i3.1084
    [Google Scholar]
  35. Medina-MorenoA. El-HammadiM.M. AriasJ.L. pH-dependent, extended release and enhanced in vitro efficiency against colon cancer of Tegafur formulated using chitosan-coated poly(ε-caprolactone) nanoparticles.J. Drug Deliv. Sci. Technol.20238610459410.1016/j.jddst.2023.104594
    [Google Scholar]
  36. AndresA.I. PetronM.J. LopezA.M. TimonM.L. Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers’ spent grain using response surface methodology (rsm).Foods2020910139810.3390/foods910139833023120
    [Google Scholar]
  37. K MA.S. AngolkarM. RahamathullaM. ThajudeenK.Y. AhmedM.M. FarhanaS.A. ShivanandappaT.B. ParamshettiS. OsmaniR.A.M. NatarajanJ. Box-behnken design-based optimization and evaluation of lipid-based nano drug delivery system for brain targeting of bromocriptine.Pharmaceuticals (Basel)202417672010.3390/ph1706072038931387
    [Google Scholar]
/content/journals/mns/10.2174/0118764029334154240916065653
Loading
/content/journals/mns/10.2174/0118764029334154240916065653
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Albumin; ethambutol; nanoparticles; optimization; sustained release; tuberculosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test