Skip to content
2000
Volume 17, Issue 2
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Turmeric () contains a polyphenol called curcumin, which has a variety of medicinal uses, including anti-inflammatory, antioxidant, and anticancer effects. However, due to its rapid disintegration, low solubility, and poor absorption, its clinical application is restricted. To overcome these challenges, researchers are exploring the use of various kind of curcumin nanoparticles, which enhance its solubility, stability, and bioavailability to deliver its benefits more efficiently. Integrating curcumin into composite nanoparticles has emerged as a prominent strategy to overcome the limitations of curcumin’s bioavailability. This review aims to overview various curcumin nanoparticle forms that have been synthesized to enhance curcumin's permeability, solubility, and oral bioavailability. Specifically, we explored polymeric nanoparticles, lipid nanoparticles, non-polymeric nanoparticles, and nanocrystals as carriers to enhance the biopharmaceutical properties of curcumin. The collected data from the literature indicated significant improvements in solubility and permeability, with lipid-based and polymeric nanoparticles showing the most promising results in enhancing the oral bioavailability of curcumin. It can be suggested that nano encapsulation not only protects curcumin from rapid degradation but also facilitates its efficient transport and absorption at target sites.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029339646241003060231
2024-10-21
2025-06-12
Loading full text...

Full text loading...

References

  1. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  2. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑823143785
    [Google Scholar]
  3. AggarwalB.B. HarikumarK.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases.Int. J. Biochem. Cell Biol.2009411405910.1016/j.biocel.2008.06.01018662800
    [Google Scholar]
  4. GoelA. KunnumakkaraA.B. AggarwalB.B. Curcumin as “Curecumin”: From kitchen to clinic.Biochem. Pharmacol.200875478780910.1016/j.bcp.2007.08.01617900536
    [Google Scholar]
  5. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  6. YallapuM.M. MaherD.M. SundramV. BellM.C. JaggiM. ChauhanS.C. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth.J. Ovarian Res.2010311110.1186/1757‑2215‑3‑1120429876
    [Google Scholar]
  7. AdhikariL. KumarN. SahaA. SemaltyA. SemaltyM. Naringenin loaded cyclodextrin nanoparticles for improved drug delivery.Indian Drugs2022598828510.53879/id.59.08.12746
    [Google Scholar]
  8. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  9. MishraB. PatelB.B. TiwariS. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery.Nanomedicine20106192410.1016/j.nano.2009.04.00819447208
    [Google Scholar]
  10. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnol.20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  11. KreuterJ. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know?Adv. Drug Deliv. Rev.20147121410.1016/j.addr.2013.08.00823981489
    [Google Scholar]
  12. SahooS.K. LabhasetwarV. Nanotech approaches to drug delivery and imaging.Drug Discov. Today20038241112112010.1016/S1359‑6446(03)02903‑914678737
    [Google Scholar]
  13. AbdellatifA.A.H. AlsowineaA.F. Approved and marketed nanoparticles for disease targeting and applications in COVID-19.Nanotechnol. Rev.20211011941197710.1515/ntrev‑2021‑0115
    [Google Scholar]
  14. HsuH.J. BugnoJ. LeeS. HongS. Dendrimer‐based nanocarriers: A versatile platform for drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201791e140910.1002/wnan.140927126551
    [Google Scholar]
  15. BharaliD.J. KhalilM. GurbuzM. SimoneT.M. MousaS.A. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers.Int. J. Nanomedicine200941719421366
    [Google Scholar]
  16. TripathiP.K. GuptaS. RaiS. ShrivatavaA. TripathiS. SinghS. KhopadeA.J. KesharwaniP. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics.Drug Dev. Ind. Pharm.202046341242610.1080/03639045.2020.172413232011185
    [Google Scholar]
  17. CruchoC.I.C. BarrosM.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods.Mater. Sci. Eng. C20178077178410.1016/j.msec.2017.06.00428866227
    [Google Scholar]
  18. Trigo GutierrezJ.K. ZanattaG.C. OrtegaA.L.M. BalasteguiM.I.C. SanitáP.V. PavarinaA.C. BarbugliP.A. MimaE.G.O. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial photodynamic therapy.PLoS One20171211e018741810.1371/journal.pone.018741829107978
    [Google Scholar]
  19. NairR.S. MorrisA. BillaN. LeongC.O. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery.AAPS PharmSciTech20192026910.1208/s12249‑018‑1279‑630631984
    [Google Scholar]
  20. MaghsoudiA. YazdianF. ShahmoradiS. GhaderiL. HematiM. AmoabedinyG. Curcumin-loaded polysaccharide nanoparticles: Optimization and anticariogenic activity against Streptococcus mutans.Mater. Sci. Eng. C2017751259126710.1016/j.msec.2017.03.03228415415
    [Google Scholar]
  21. ChopraM. JainR. DewanganA.K. VarkeyS. MazumderS. Design of curcumin loaded polymeric nanoparticles-optimization, formulation and characterization.J. Nanosci. Nanotechnol.20161699432944210.1166/jnn.2016.12363
    [Google Scholar]
  22. ChaurasiaS. ChaubeyP. PatelR.R. KumarN. MishraB. Curcumin-polymeric nanoparticles against colon-26 tumor-bearing mice: Cytotoxicity, pharmacokinetic and anticancer efficacy studies.Drug Dev. Ind. Pharm.201642569470010.3109/03639045.2015.106494126165247
    [Google Scholar]
  23. AhmadZ. ShahA. SiddiqM. KraatzH.B. Polymeric micelles as drug delivery vehicles.RSC Advances2014433170281703810.1039/C3RA47370H
    [Google Scholar]
  24. WangL.L. HeD.D. WangS.X. DaiY.H. JuJ.M. ZhaoC.L. Preparation and evaluation of curcumin-loaded self-assembled micelles.Drug Dev. Ind. Pharm.201844456356910.1080/03639045.2017.140543129148846
    [Google Scholar]
  25. ZhangQ. PolyakovN.E. ChistyachenkoY.S. KhvostovM.V. FrolovaT.S. TolstikovaT.G. DushkinA.V. SuW. Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry.Drug Deliv.201825119820910.1080/10717544.2017.142229829302995
    [Google Scholar]
  26. WangJ. MaW. TuP. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: In vitro and in vivo .Colloids Surf. B Biointerfaces201513310811910.1016/j.colsurfb.2015.05.05626094144
    [Google Scholar]
  27. RaniS. MishraS. SharmaM. NandyA. MozumdarS. Solubility and stability enhancement of curcumin in Soluplus ® polymeric micelles: A spectroscopic study.J. Dispers. Sci. Technol.202041452353610.1080/01932691.2019.1592687
    [Google Scholar]
  28. PatilS. ChoudharyB. RathoreA. RoyK. MahadikK. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.Phytomedicine201522121103111110.1016/j.phymed.2015.08.00626547533
    [Google Scholar]
  29. NaksuriyaO. ShiY. van NostrumC.F. AnuchapreedaS. HenninkW.E. OkonogiS. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.Eur. J. Pharm. Biopharm.20159450151210.1016/j.ejpb.2015.06.01026134273
    [Google Scholar]
  30. HatamipourM. SahebkarA. AlavizadehS.H. DorriM. JaafariM.R. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids.Iran. J. Basic Med. Sci.201922328228931156789
    [Google Scholar]
  31. WijianiN. IsadiartutiD. RijalM.A.S. YusufH. Characterization and dissolution study of micellar curcumin-spray dried powder for oral delivery.Int. J. Nanomedicine2020151787179610.2147/IJN.S24505032214811
    [Google Scholar]
  32. BagheriM. FensM.H. KleijnT.G. CapomaccioR.B. MehnD. KrawczykP.M. ScutiglianiE.M. GurinovA. BaldusM. van KronenburgN.C.H. KokR.J. HegerM. van NostrumC.F. HenninkW.E. In vitro and in vivo studies on HPMA-based polymeric micelles loaded with curcumin.Mol. Pharm.20211831247126310.1021/acs.molpharmaceut.0c0111433464911
    [Google Scholar]
  33. DuanY. WangJ. YangX. DuH. XiY. ZhaiG. Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro.Drug Deliv.2015221505710.3109/10717544.2013.87350124417664
    [Google Scholar]
  34. LeeW.H. BebawyM. LooC.Y. LukF. MasonR.S. RohanizadehR. Fabrication of curcumin micellar nanoparticles with enhanced anti-cancer activity.J. Biomed. Nanotechnol.20151161093110510.1166/jbn.2015.204126353597
    [Google Scholar]
  35. PangX. JiangY. XiaoQ. LeungA.W. HuaH. XuC. pH-responsive polymer–drug conjugates: Design and progress.J. Control. Release201622211612910.1016/j.jconrel.2015.12.02426704934
    [Google Scholar]
  36. SarikaP.R. JamesN.R. KumarP.R.A. RajD.K. KumaryT.V. Gum arabic-curcumin conjugate micelles with enhanced loading for curcumin delivery to hepatocarcinoma cells.Carbohydr. Polym.201513416717410.1016/j.carbpol.2015.07.06826428113
    [Google Scholar]
  37. LohcharoenkalW. WangL. ChenY.C. RojanasakulY. Protein nanoparticles as drug delivery carriers for cancer therapy.BioMed Res. Int.2014201411210.1155/2014/18054924772414
    [Google Scholar]
  38. TarhiniM. Greige-GergesH. ElaissariA. Protein-based nanoparticles: From preparation to encapsulation of active molecules.Int. J. Pharm.20175221-217219710.1016/j.ijpharm.2017.01.06728188876
    [Google Scholar]
  39. YuanD. ZhouF. ShenP. ZhangY. LinL. ZhaoM. Self-assembled soy protein nanoparticles by partial enzymatic hydrolysis for pH-driven encapsulation and delivery of hydrophobic cargo curcumin.Food Hydrocoll.202112010675910.1016/j.foodhyd.2021.106759
    [Google Scholar]
  40. AlemánJ.V. ChadwickA.V. HeJ. HessM. HorieK. JonesR.G. KratochvílP. MeiselI. MitaI. MoadG. PenczekS. SteptoR.F.T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007).Pure Appl. Chem.200779101801182910.1351/pac200779101801
    [Google Scholar]
  41. TaharaY. AkiyoshiK. Current advances in self-assembled nanogel delivery systems for immunotherapy.Adv. Drug Deliv. Rev.201595657610.1016/j.addr.2015.10.00426482187
    [Google Scholar]
  42. SharmaA. GargT. AmanA. PanchalK. SharmaR. KumarS. MarkandeywarT. Nanogel — An advanced drug delivery tool: Current and future.Artif. Cells Nanomed. Biotechnol.201644116517710.3109/21691401.2014.93074525053442
    [Google Scholar]
  43. KesharwaniP. JainA. SrivastavaA.K. KeshariM.K. Systematic development and characterization of curcumin-loaded nanogel for topical application.Drug Dev. Ind. Pharm.20204691443145710.1080/03639045.2020.179399832644836
    [Google Scholar]
  44. LiuR. SunL. FangS. WangS. ChenJ. XiaoX. LiuC. Thermosensitive in situ nanogel as ophthalmic delivery system of curcumin: development, characterization, in vitro permeation and in vivo pharmacokinetic studies.Pharm. Dev. Technol.201621557658210.3109/10837450.2015.102660726024239
    [Google Scholar]
  45. FengJ. WuS. WangH. LiuS. Improved bioavailability of curcumin in ovalbumin-dextran nanogels prepared by maillard reaction.J. Funct. Foods201627556810.1016/j.jff.2016.09.002
    [Google Scholar]
  46. NguyenK.T. TranP.H.L. NgoH.V. TranT.T.D. Film-forming nanogels: Effects of nanocarriers and film-forming gel on the sustained release of curcumin.Anticancer. Agents Med. Chem.202121565866610.2174/187152062066620040712402032264815
    [Google Scholar]
  47. PathanI.B. MundeS.J. ShelkeS. AmbekarW. Mallikarjuna SettyC. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and in-vivo evaluation.Int. J. Polym. Mater.201968416517410.1080/00914037.2018.1429437
    [Google Scholar]
  48. SarmaS.K. DuttaU. BharaliA. KumarS. BaruahS. SarmaH. LalooD. SahuB.P. Isolation of curcumin from Lakadong turmeric of Meghalaya and development of its PLGA-Cur-NS loaded nanogel for potential anti-inflammatory and cutaneous wound healing activity in Wistar rats.Future J. Pharm. Sci.2023918510.1186/s43094‑023‑00534‑9
    [Google Scholar]
  49. SarikaP.R. NirmalaR.J. Curcumin loaded gum arabic aldehyde-gelatin nanogels for breast cancer therapy.Mater. Sci. Eng. C20166533133710.1016/j.msec.2016.04.04427157759
    [Google Scholar]
  50. ChengC. PengS. LiZ. ZouL. LiuW. LiuC. Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process.RSC Advances2017742259782598610.1039/C7RA02861J
    [Google Scholar]
  51. ChenW.T. WuH.T. ChangI.C. ChenH.W. FangW.P. Preparation of curcumin-loaded liposome with high bioavailability by a novel method of high pressure processing.Chem. Phys. Lipids202224410519110.1016/j.chemphyslip.2022.10519135257749
    [Google Scholar]
  52. TaiK. RappoltM. MaoL. GaoY. LiX. YuanF. The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan.Food Hydrocoll.20209910535510.1016/j.foodhyd.2019.105355
    [Google Scholar]
  53. JinH.H. LuQ. JiangJ.G. Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin.J. Dairy Sci.20169931780179010.3168/jds.2015‑1039126774724
    [Google Scholar]
  54. CuomoF. CofeliceM. VendittiF. CeglieA. MiguelM. LindmanB. LopezF. In-vitro digestion of curcumin loaded chitosan-coated liposomes.Colloids Surf. B Biointerfaces2018168293410.1016/j.colsurfb.2017.11.04729183647
    [Google Scholar]
  55. TaiK. RappoltM. HeX. WeiY. ZhuS. ZhangJ. MaoL. GaoY. YuanF. Effect of β-sitosterol on the curcumin-loaded liposomes: Vesicle characteristics, physicochemical stability, in vitro release and bioavailability.Food Chem.20192939210210.1016/j.foodchem.2019.04.07731151654
    [Google Scholar]
  56. PengS. ZouL. LiuW. LiZ. LiuW. HuX. ChenX. LiuC. Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin.Carbohydr. Polym.201715632233210.1016/j.carbpol.2016.09.06027842829
    [Google Scholar]
  57. TianM.P. SongR.X. WangT. SunM.J. LiuY. ChenX.G. Inducing sustained release and improving oral bioavailability of curcumin via chitosan derivatives-coated liposomes.Int. J. Biol. Macromol.2018120Pt A70271010.1016/j.ijbiomac.2018.08.14630170061
    [Google Scholar]
  58. VermaK. PrasadJ. SahaS. SahuS. Formulation and evaluation of curcumin loaded liposome and its bio-enhancement.J. Drug Deliv. Ther.201994-A42543710.22270/jddt.v9i4‑A.3505
    [Google Scholar]
  59. ZhouW. ChengC. MaL. ZouL. LiuW. LiR. CaoY. LiuY. RuanR. LiJ. The formation of chitosan-coated rhamnolipid liposomes containing curcumin: Stability and in vitro digestion.Molecules202126356010.3390/molecules2603056033494543
    [Google Scholar]
  60. de JesusM.B. ZuhornI.S. Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms.J. Control. Release201520111310.1016/j.jconrel.2015.01.01025578828
    [Google Scholar]
  61. LingayatV.J. ZarekarN.S. ShendgeR.S. Solid lipid nanoparticles: A review.NanosciNanotechnol Res201742677210.12691/nnr‑4‑2‑5
    [Google Scholar]
  62. JourghanianP. GhaffariS. ArdjmandM. HaghighatS. MohammadnejadM. Sustained release curcumin loaded solid lipid nanoparticles.Adv. Pharm. Bull.201661172110.15171/apb.2016.0427123413
    [Google Scholar]
  63. BanC. JoM. ParkY.H. KimJ.H. HanJ.Y. LeeK.W. KweonD.H. ChoiY.J. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles.Food Chem.202030212532810.1016/j.foodchem.2019.12532831404868
    [Google Scholar]
  64. JiH. TangJ. LiM. RenJ. ZhengN. WuL. Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin.Drug Deliv.201623245947010.3109/10717544.2014.91867724892628
    [Google Scholar]
  65. GuptaT. SinghJ. KaurS. SandhuS. SinghG. KaurI.P. Enhancing bioavailability and stability of curcumin using solid lipid nanoparticles (CLEN): A covenant for its effectiveness.Front. Bioeng. Biotechnol.2020887910.3389/fbioe.2020.0087933178666
    [Google Scholar]
  66. GumireddyA. ChristmanR. KumariD. TiwariA. NorthE.J. ChauhanH. Preparation, characterization, and in vitro evaluation of curcumin-and resveratrol-loaded solid lipid nanoparticles.AAPS PharmSciTech201920414510.1208/s12249‑019‑1349‑430887133
    [Google Scholar]
  67. RigheschiC. BergonziM.C. IsacchiB. BazzicalupiC. GratteriP. BiliaA.R. Enhanced curcumin permeability by SLN formulation: The PAMPA approach.Lebensm. Wiss. Technol.20166647548310.1016/j.lwt.2015.11.008
    [Google Scholar]
  68. YeoS. KimM.J. ShimY.K. YoonI. LeeW.K. Solid lipid nanoparticles of curcumin designed for enhanced bioavailability and anticancer efficiency.ACS Omega2022740358753588410.1021/acsomega.2c0440736249382
    [Google Scholar]
  69. GuorguiJ. WangR. MattheolabakisG. MackenzieG.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice.Arch. Biochem. Biophys.2018648121910.1016/j.abb.2018.04.01229679536
    [Google Scholar]
  70. Sadegh MalvajerdS. AzadiA. IzadiZ. KurdM. DaraT. DibaeiM. Sharif ZadehM. Akbari JavarH. HamidiM. Brain delivery of curcumin using solid lipid nanoparticles and nanostructured lipid carriers: Preparation, optimization, and pharmacokinetic evaluation.ACS Chem. Neurosci.201910172873910.1021/acschemneuro.8b0051030335941
    [Google Scholar]
  71. GaurP.K. MishraS. VermaA. VermaN. Ceramide–palmitic acid complex based Curcumin solid lipid nanoparticles for transdermal delivery: Pharmacokinetic and pharmacodynamic study.J. Exp. Nanosci.2016111385310.1080/17458080.2015.1025301
    [Google Scholar]
  72. SandhuS.K. KumarS. RautJ. SinghM. KaurS. SharmaG. RoldanT.L. TrehanS. HollowayJ. WahlerG. LaskinJ.D. SinkoP.J. BerthiaumeF. Michniak-KohnB. RishiP. GaneshN. KaurI.P. Systematic development and characterization of novel, high drug-loaded, photostable, curcumin solid lipid nanoparticle hydrogel for wound healing.Antioxidants202110572510.3390/antiox1005072534063003
    [Google Scholar]
  73. SabirF. QindeelM. RehmanA. AhmadN.M. KhanG.M. CsokaI. AhmedN. An efficient approach for development and optimisation of curcumin-loaded solid lipid nanoparticles’ patch for transdermal delivery.J. Microencapsul.202138423324810.1080/02652048.2021.189932133689550
    [Google Scholar]
  74. PrabhuA. JoseJ. KumarL. SalwaS. Vijay KumarM. NabaviS.M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study.AAPS PharmSciTech20222314910.1208/s12249‑021‑02186‑534988698
    [Google Scholar]
  75. WangJ. ZhuR. SunD. SunX. GengZ. LiuH. WangS.L. Intracellular uptake of curcumin-loaded solid lipid nanoparticles exhibit anti-inflammatory activities superior to those of curcumin through the NF-κB signaling pathway.J. Biomed. Nanotechnol.201511340341510.1166/jbn.2015.192526307824
    [Google Scholar]
  76. ZhaoW. ZengM. LiK. PiC. LiuZ. ZhanC. YuanJ. SuZ. WeiY. WenJ. PiF. SongX. LeeR.J. WeiY. ZhaoL. Solid lipid nanoparticle as an effective drug delivery system of a novel curcumin derivative: Formulation, release in vitro and pharmacokinetics in vivo.Pharm. Biol.20226012300230710.1080/13880209.2022.213620536606719
    [Google Scholar]
  77. HazzahH.A. FaridR.M. NasraM.M.A. ZakariaM. GawishY. El-MassikM.A. AbdallahO.Y. A new approach for treatment of precancerous lesions with curcumin solid–lipid nanoparticle-loaded gels: In vitro and clinical evaluation.Drug Deliv.20162341409141910.3109/10717544.2015.106552426146889
    [Google Scholar]
  78. ShimasakiT. YamamotoS. ArisawaT. Exosome research and co-culture study.Biol. Pharm. Bull.20184191311132110.1248/bpb.b18‑0022330175767
    [Google Scholar]
  79. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑11190231220978
    [Google Scholar]
  80. VashishtM. RaniP. OnteruS.K. SinghD. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro.Appl. Biochem. Biotechnol.20171833993100710.1007/s12010‑017‑2478‑428466459
    [Google Scholar]
  81. SinghA. SreenuB. AlviS. PatnamS. RajeswariK. KutalaV.K. Bovine milk derived exosomal-curcumin exhibiting enhanced stability, solubility, and cellular bioavailability.Clin. Oncol.202161769
    [Google Scholar]
  82. AqilF. MunagalaR. JeyabalanJ. AgrawalA.K. GuptaR. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin.AAPS J.20171961691170210.1208/s12248‑017‑0154‑929047044
    [Google Scholar]
  83. IijimaS. Helical microtubules of graphitic carbon.Nature19913546348565810.1038/354056a0
    [Google Scholar]
  84. EbbesenT.W. Carbon Nanotubes.Annu. Rev. Mater. Sci.199424123526410.1146/annurev.ms.24.080194.001315
    [Google Scholar]
  85. ReillyR.M. Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine.J. Nucl. Med.20074871039104210.2967/jnumed.107.04172317607037
    [Google Scholar]
  86. SchrandA.M. HensS.A.C. ShenderovaO.A. Nanodiamond particles: Properties and perspectives for bioapplications.Crit. Rev. Solid State Mater. Sci.2009341-2187410.1080/10408430902831987
    [Google Scholar]
  87. Torres SangiaoE. HolbanA.M. GestalM.C. Applications of nanodiamonds in the detection and therapy of infectious diseases.Materials (Basel)20191210163910.3390/ma1210163931137476
    [Google Scholar]
  88. ChengB. PanH. LiuD. LiD. LiJ. YuS. TanG. PanW. Functionalization of nanodiamond with vitamin E TPGS to facilitate oral absorption of curcumin.Int. J. Pharm.20185401-216217010.1016/j.ijpharm.2018.02.01429452153
    [Google Scholar]
  89. KumarH. VenkateshN. BhowmikH. KuilaA. Metallic nanoparticle: A review.Biomed. J. Sci. Tech. Res.20184237653775
    [Google Scholar]
  90. ModyV. SiwaleR. SinghA. ModyH. Introduction to metallic nanoparticles.J. Pharm. Bioallied Sci.20102428228910.4103/0975‑7406.7212721180459
    [Google Scholar]
  91. YallapuM.M. OthmanS.F. CurtisE.T. BauerN.A. ChauhanN. KumarD. JaggiM. ChauhanS.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications.Int. J. Nanomedicine201271761177922619526
    [Google Scholar]
  92. BourangS. AsadianS. NoruzpourM. MansuryarA. AziziS. EbrahimiH.A. A HooshyarV. PLA-HA/Fe3O4 magnetic nanoparticles loaded with curcumin: Physicochemical characterization and toxicity evaluation in HCT116 colorectal cancer cells.Disco. Appl. Sci.20246418610.1007/s42452‑024‑05858‑6
    [Google Scholar]
  93. AhmadiF. AkbariJ. SaeediM. SeyedabadiM. EbrahimnejadP. GhasemiS. NokhodchiA. Efficient synergistic combination effect of curcumin with piperine by polymeric magnetic nanoparticles for breast cancer treatment.J. Drug Deliv. Sci. Technol.20238610462410.1016/j.jddst.2023.104624
    [Google Scholar]
  94. R FaraniM. AzarianM. H Sheikh HosseinH. AbdolvahabiZ. M AbgarmiZ. MoradiA. MousaviS.M. AshrafizadehM. MakvandiP. SaebM.R. RabieeN. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer.ACS Appl. Bio Mater.2022531305131810.1021/acsabm.1c0131135201760
    [Google Scholar]
  95. VaraprasadK. YallapuM.M. NúñezD. OyarzúnP. LópezM. JayaramuduT. KarthikeyanC. Generation of engineered core–shell antibiotic nanoparticles.RSC Advances20199158326833210.1039/C9RA00536F31131098
    [Google Scholar]
  96. JamiesonT. BakhshiR. PetrovaD. PocockR. ImaniM. SeifalianA.M. Biological applications of quantum dots.Biomaterials200728314717473210.1016/j.biomaterials.2007.07.01417686516
    [Google Scholar]
  97. IgaA.M. RobertsonJ.H. WinsletM.C. SeifalianA.M. Clinical potential of quantum dots.J. Biomed. Biotechnol.20072007107608718317518
    [Google Scholar]
  98. ArvapalliD.M. SheardyA.T. AlladoK. ChevvaH. YinZ. WeiJ. Design of curcumin loaded carbon nanodots delivery system: Enhanced bioavailability, release kinetics, and anticancer activity.ACS Appl. Bio Mater.20203128776878510.1021/acsabm.0c0114435019553
    [Google Scholar]
  99. ChenF. HableelG. ZhaoE.R. JokerstJ.V. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring.J. Colloid Interface Sci.201852126127910.1016/j.jcis.2018.02.05329510868
    [Google Scholar]
  100. BharaliD.J. KlejborI. StachowiakE.K. DuttaP. RoyI. KaurN. BergeyE.J. PrasadP.N. StachowiakM.K. Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain.Proc. Natl. Acad. Sci. USA200510232115391154410.1073/pnas.050492610216051701
    [Google Scholar]
  101. HartonoS.B. HadisoewignyoL. YangY. MekaA.K. Antaresti, YuC. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement.Nanotechnology2016275050560510.1088/0957‑4484/27/50/50560527875331
    [Google Scholar]
  102. DengJ. WangJ. HuH. HongJ. YangL. ZhouH. XuD. Application of mesoporous calcium silicate nanoparticles as a potential SD carrier to improve the solubility of curcumin.J. Dispers. Sci. Technol.202344122258226610.1080/01932691.2022.2068567
    [Google Scholar]
  103. RibeiroT.C. SábioR.M. LuizM.T. de SouzaL.C. Fonseca-SantosB. Cides da SilvaL.C. FantiniM.C.A. PlanetaC.S. ChorilliM. Curcumin-loaded mesoporous silica nanoparticles dispersed in thermo-responsive hydrogel as potential Alzheimer disease therapy.Pharmaceutics2022149197610.3390/pharmaceutics1409197636145723
    [Google Scholar]
  104. ChenC. SunW. WangX. WangY. WangP. Rational design of curcumin loaded multifunctional mesoporous silica nanoparticles to enhance the cytotoxicity for targeted and controlled drug release.Mater. Sci. Eng. C201885889610.1016/j.msec.2017.12.00729407161
    [Google Scholar]
  105. GaoJ. FanK. JinY. ZhaoL. WangQ. TangY. XuH. LiuZ. WangS. LinJ. LinD. PEGylated lipid bilayer coated mesoporous silica nanoparticles co-delivery of paclitaxel and curcumin leads to increased tumor site drug accumulation and reduced tumor burden.Eur. J. Pharm. Sci.201914010507010.1016/j.ejps.2019.10507031518679
    [Google Scholar]
  106. NagarwalR.C. KumarR. DhanawatM. DasN. PanditJ.K. Nanocrystal technology in the delivery of poorly soluble drugs: An overview.Curr. Drug Deliv.20118439840610.2174/15672011179576798821453258
    [Google Scholar]
  107. JunyaprasertV.B. MorakulB. Nanocrystals for enhancement of oral bioavailability of poorly water-soluble drugs.Asian J. Pharm. Sci.2015101132310.1016/j.ajps.2014.08.005
    [Google Scholar]
  108. YangD. WangL. ZhangL. WangM. LiD. LiuN. LiuD. ZhaoM. YaoX. Construction, characterization and bioactivity evaluation of curcumin nanocrystals with extremely high solubility and dispersion prepared by ultrasound-assisted method.Ultrason. Sonochem.202410410683510.1016/j.ultsonch.2024.10683538460473
    [Google Scholar]
  109. XiangH. XuS. ZhangW. LiY. ZhouY. MiaoX. Skin permeation of curcumin nanocrystals: Effect of particle size, delivery vehicles, and permeation enhancer.Colloids Surf. B Biointerfaces202322411320310.1016/j.colsurfb.2023.11320336791520
    [Google Scholar]
/content/journals/mns/10.2174/0118764029339646241003060231
Loading
/content/journals/mns/10.2174/0118764029339646241003060231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test