Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient’s life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366298799240625115843
2024-11-01
2024-11-22
Loading full text...

Full text loading...

References

  1. FergusonJ.L. TurnerS.P. Bone cancer: Diagnosis and treatment principles.Am. Fam. Physician2018984205213 30215968
    [Google Scholar]
  2. DoB.H. LanglotzC. BeaulieuC.F. Bone tumor diagnosis using a naïve Bayesian model of demographic and radiographic features.J. Digit. Imaging201730564064710.1007/s10278‑017‑0001‑7 28752323
    [Google Scholar]
  3. EatonB.R. SchwarzR. VatnerR. Osteosarcoma.Pediatr. Blood Cancer202168S2e2835210.1002/pbc.28352 32779875
    [Google Scholar]
  4. BeirdH.C. BielackS.S. FlanaganA.M. Osteosarcoma.Nat. Rev. Dis. Primers2022817710.1038/s41572‑022‑00409‑y 36481668
    [Google Scholar]
  5. GrünewaldT.G.P. Cidre-AranazF. SurdezD. Ewing sarcoma.Nat. Rev. Dis. Primers201841510.1038/s41572‑018‑0003‑x 29977059
    [Google Scholar]
  6. ChoiJ.H. RoJ.Y. The 2020 WHO classification of tumors of bone: An updated review.Adv. Anat. Pathol.202128311913810.1097/PAP.0000000000000293 33480599
    [Google Scholar]
  7. WeinschenkR.C. WangW-L. LewisV.O. Chondrosarcoma.JAAOS20212913553562 33595238
    [Google Scholar]
  8. Orcajo-RinconJ. Muñoz-LangaJ. Sepúlveda-SánchezJ.M. Review of imaging techniques for evaluating morphological and functional responses to the treatment of bone metastases in prostate and breast cancer.Clin. Transl. Oncol.20222471290131010.1007/s12094‑022‑02784‑0 35152355
    [Google Scholar]
  9. ColemanR.E. Clinical features of metastatic bone disease and risk of skeletal morbidity.Clin. Cancer Res.200612206243s6249s10.1158/1078‑0432.CCR‑06‑0931 17062708
    [Google Scholar]
  10. AllanAL VantyghemSA TuckAB ChambersAF Tumor dormancy and cancer stem cells: Implications for the biology and treatment of breast cancer metastasis.Breast Dis2007-2007261879810.3233/BD‑2007‑26108 17473368
    [Google Scholar]
  11. RoodmanG.D. Mechanisms of bone metastasis.N. Engl. J. Med.2004350161655166410.1056/NEJMra030831 15084698
    [Google Scholar]
  12. SantiniD. GalluzzoS. ZoccoliA. New molecular targets in bone metastases.Cancer Treat. Rev.201036S6S1010.1016/S0305‑7372(10)70013‑X 21129612
    [Google Scholar]
  13. LiptonA. GoesslC. Clinical development of anti-RANKL therapies for treatment and prevention of bone metastasis.Bone2011481969910.1016/j.bone.2010.10.161 20950721
    [Google Scholar]
  14. ColemanR.E. BrownJ. HolenI. Bone metastases. In: Abeloff's Clinical Oncology.2020809830.e310.1016/B978‑0‑323‑47674‑4.00056‑6
    [Google Scholar]
  15. O’SullivanG.J. CartyF.L. CroninC.G. Imaging of bone metastasis: An update.World J. Radiol.20157820221110.4329/wjr.v7.i8.202 26339464
    [Google Scholar]
  16. ŁukaszewskiB. NazarJ. GochM. ŁukaszewskaM. StępińskiA. JurczykM.U. Diagnostic methods for detection of bone metastases.Contemp. Oncol. (Pozn.)20172129810310.5114/wo.2017.68617
    [Google Scholar]
  17. PiccioliA. MaccauroG. SpinelliM.S. BiaginiR. RossiB. Bone metastases of unknown origin: Epidemiology and principles of management.J. Orthop. Traumatol.2015162818610.1007/s10195‑015‑0344‑0 25726410
    [Google Scholar]
  18. RybakL.D. RosenthalD.I. Radiological imaging for the diagnosis of bone metastases.Q. J. Nucl. Med.20014515364 11456376
    [Google Scholar]
  19. RaymondA.K. JaffeN. Osteosarcoma multidisciplinary approach to the management from the pathologist’s perspective.Cancer Treat Res2009152638410.1007/978‑1‑4419‑0284‑9_4
    [Google Scholar]
  20. IsakoffM.S. BielackS.S. MeltzerP. GorlickR. Osteosarcoma: Current treatment and a collaborative pathway to success.J. Clin. Oncol.201533273029303510.1200/JCO.2014.59.4895 26304877
    [Google Scholar]
  21. ZhaoX. WuQ. GongX. LiuJ. MaY. Osteosarcoma: A review of current and future therapeutic approaches.Biomed. Eng. Online20212012410.1186/s12938‑021‑00860‑0 33653371
    [Google Scholar]
  22. PosthumaDeBoer JWitlox MA, Kaspers GJL, van Royen BJ. Molecular alterations as target for therapy in metastatic osteosarcoma: A review of literature.Clin. Exp. Metastasis201128549350310.1007/s10585‑011‑9384‑x 21461590
    [Google Scholar]
  23. MirabelloL. TroisiR.J. SavageS.A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons.Int. J. Cancer2009125122923410.1002/ijc.24320 19330840
    [Google Scholar]
  24. MirabelloL. TroisiR.J. SavageS.A. Osteosarcoma incidence and survival rates from 1973 to 2004.Cancer200911571531154310.1002/cncr.24121 19197972
    [Google Scholar]
  25. CzarneckaA.M. SynoradzkiK. FirlejW. Molecular biology of osteosarcoma.Cancers (Basel)2020128213010.3390/cancers12082130 32751922
    [Google Scholar]
  26. RickelK. FangF. TaoJ. Molecular genetics of osteosarcoma.Bone2017102697910.1016/j.bone.2016.10.017 27760307
    [Google Scholar]
  27. AndersonM.E. Update on survival in osteosarcoma.Orthop. Clin. North Am.201647128329210.1016/j.ocl.2015.08.022 26614941
    [Google Scholar]
  28. BielackS.S. Hecker-NoltingS. BlattmannC. KagerL. Advances in the management of osteosarcoma.F1000 Res.20165276710.12688/f1000research.9465.1 27990273
    [Google Scholar]
  29. JonesK.B. FergusonP.C. LamB. Effects of neoadjuvant chemotherapy on image-directed planning of surgical resection for distal femoral osteosarcoma.J. Bone Joint Surg. Am.201294151399140510.2106/JBJS.K.00971 22854993
    [Google Scholar]
  30. AmbrosioL. RaucciM.G. VadalàG. AmbrosioL. PapaliaR. DenaroV. Innovative biomaterials for the treatment of bone cancer.Int. J. Mol. Sci.20212215821410.3390/ijms22158214 34360979
    [Google Scholar]
  31. LanzkowskyP. Manual of pediatric hematology and oncology.Elsevier2005
    [Google Scholar]
  32. ReedD.R. HayashiM. WagnerL. Treatment pathway of bone sarcoma in children, adolescents, and young adults.Cancer2017123122206221810.1002/cncr.30589 28323337
    [Google Scholar]
  33. JoV.Y. FletcherC.D.M. WHO classification of soft tissue tumours: An update based on the 2013 (4th) edition.Pathology20144629510410.1097/PAT.0000000000000050 24378391
    [Google Scholar]
  34. van Praag VeroniekV.M. Rueten-BuddeA.J. HoV. DijkstraP.D.S. FioccoM. van de SandeM.A.J. Incidence, outcomes and prognostic factors during 25 years of treatment of chondrosarcomas.Surg. Oncol.201827340240810.1016/j.suronc.2018.05.009 30217294
    [Google Scholar]
  35. WuA.M. LiG. ZhengJ.W. Chondrosarcoma in a paediatric population: A study of 247 cases.J. Child. Orthop.2019131899910.1302/1863‑2548.13.180109 30838081
    [Google Scholar]
  36. MosierA.D. MosierS.M. StrengeK. PatelT. Chondrosarcoma in childhood: The radiologic and clinical conundrum.J. Radiol. Case Rep.2012612324210.3941/jrcr.v6i12.1241 23365701
    [Google Scholar]
  37. MongaV. ManiH. HirbeA. MilhemM. Non-conventional treatments for conventional chondrosarcoma.Cancers (Basel)2020127196210.3390/cancers12071962 32707689
    [Google Scholar]
  38. NazeriE. Gouran SavadkoohiM. Majidzadeh-AK. EsmaeiliR. Chondrosarcoma: An overview of clinical behavior, molecular mechanisms mediated drug resistance and potential therapeutic targets.Crit. Rev. Oncol. Hematol.201813110210910.1016/j.critrevonc.2018.09.001 30293700
    [Google Scholar]
  39. DrilonA.D. PopatS. BhucharG. Extraskeletal myxoid chondrosarcoma.Cancer2008113123364337110.1002/cncr.23978 18951519
    [Google Scholar]
  40. DelattreO. ZucmanJ. PlougastelB. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours.Nature1992359639116216510.1038/359162a0 1522903
    [Google Scholar]
  41. ZöllnerS.K. AmatrudaJ.F. BauerS. Ewing sarcoma—diagnosis, treatment, clinical challenges and future perspectives.J. Clin. Med.2021108168510.3390/jcm10081685 33919988
    [Google Scholar]
  42. PDQ Pediatric Treatment Editorial BoardEwing Sarcoma and Undifferentiated Small Round Cell Sarcomas of Bone and Soft Tissue Treatment (PDQ®): Health Professional Version. In: PDQ Cancer Information Summaries. Bethesda (MD): National Cancer Institute (US)2002
    [Google Scholar]
  43. Ewing Sarcoma and Undifferentiated Small Round Cell Sarcomas of Bone and Soft Tissue Treatment (PDQ®), Health Professional Version, NCI (cancer.gov).Available from: https://www.cancer.gov/publications/pdq
  44. YoonA.J. WangS. KutlerD.I. MicroRNA‐based risk scoring system to identify early‐stage oral squamous cell carcinoma patients at high‐risk for cancer‐specific mortality.Head Neck20204281699171210.1002/hed.26089 31981257
    [Google Scholar]
  45. TahmasebiA. EnderamiS.E. SaburiE. Micro‐RNA‐incorporated electrospun nanofibers improve osteogenic differentiation of human‐induced pluripotent stem cells.J. Biomed. Mater. Res. A2020108237738610.1002/jbm.a.36824 31654461
    [Google Scholar]
  46. AbazariM.F. Zare KariziS. KohandaniM. MicroRNA-2861 and nanofibrous scaffold synergistically promote human induced pluripotent stem cells osteogenic differentiation.Polym. Adv. Technol.202031102259226910.1002/pat.4946
    [Google Scholar]
  47. HillM. TranN. miRNA interplay: Mechanisms and consequences in cancer.Dis. Model. Mech.2021144dmm04766210.1242/dmm.047662 33973623
    [Google Scholar]
  48. GregoryR.I. YanK. AmuthanG. The microprocessor complex mediates the genesis of microRNAs.Nature2004432701423524010.1038/nature03120 15531877
    [Google Scholar]
  49. NguyenT.A. JoM.H. ChoiY.G. Functional anatomy of the human microprocessor.Cell201516161374138710.1016/j.cell.2015.05.010 26027739
    [Google Scholar]
  50. LaiE.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation.Nat. Genet.200230436336410.1038/ng865 11896390
    [Google Scholar]
  51. Di LevaG. GarofaloM. CroceC.M. MicroRNAs in cancer.Annu. Rev. Pathol.20149128731410.1146/annurev‑pathol‑012513‑104715 24079833
    [Google Scholar]
  52. TanW. LiuB. QuS. LiangG. LuoW. GongC. MicroRNAs and cancer: Key paradigms in molecular therapy.Oncol. Lett.201815327352742 29434998
    [Google Scholar]
  53. RazaU. ZhangJ.D. ŞahinÖ. MicroRNAs: Master regulators of drug resistance, stemness, and metastasis.J. Mol. Med. (Berl.)201492432133610.1007/s00109‑014‑1129‑2 24509937
    [Google Scholar]
  54. DingX.M. MicroRNAs: Regulators of cancer metastasis and epithelial-mesenchymal transition (EMT).Chin. J. Cancer201433314014710.5732/cjc.013.10094 24016392
    [Google Scholar]
  55. SpenglerR.M. OakleyC.K. DavidsonB.L. Functional microRNAs and target sites are created by lineage-specific transposition.Hum. Mol. Genet.20142371783179310.1093/hmg/ddt569 24234653
    [Google Scholar]
  56. ScuderiS.A. CalabreseG. PaternitiI. The biological function of microRNAs in bone tumors.Int. J. Mol. Sci.2022234234810.3390/ijms23042348 35216464
    [Google Scholar]
  57. KhalighfardS. AlizadehA.M. IraniS. OmranipourR. Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for the monitoring of breast cancer patients.Sci. Rep.2018811798110.1038/s41598‑018‑36321‑3 30568292
    [Google Scholar]
  58. NemeczM. StefanD.S. ComarițaI.K. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential.Cardiovasc. Diabetol.202322126010.1186/s12933‑023‑01988‑0 37749569
    [Google Scholar]
  59. AhadiA. The significance of microRNA deregulation in colorectal cancer development and the clinical uses as a diagnostic and prognostic biomarker and therapeutic agent.Noncoding RNA Res.20205312513410.1016/j.ncrna.2020.08.003 32954092
    [Google Scholar]
  60. MaciakK. DziedzicA. MillerE. Saluk-BijakJ. miR-155 as an important regulator of multiple sclerosis pathogenesis. A review.Int. J. Mol. Sci.2021229433210.3390/ijms22094332 33919306
    [Google Scholar]
  61. LlobatL. GourbaultO. Role of MicroRNAs in human osteosarcoma: Future perspectives.Biomedicines20219546310.3390/biomedicines9050463 33922820
    [Google Scholar]
  62. WuF. JiangX. WangQ. The impact of miR-9 in osteosarcoma.Medicine (Baltimore)20209935e2190210.1097/MD.0000000000021902 32871922
    [Google Scholar]
  63. XuS. YangY. HanS. WuZ. MicroRNA-9 expression is a prognostic biomarker in patients with osteosarcoma.World J. Surg. Oncol.201412119510.1186/1477‑7819‑12‑195 24969351
    [Google Scholar]
  64. FeiD. LiY. ZhaoD. ZhaoK. DaiL. GaoZ. Serum miR-9 as a prognostic biomarker in patients with osteosarcoma.J. Int. Med. Res.201442493293710.1177/0300060514534643 24962996
    [Google Scholar]
  65. GangW. TanjunW. YongH. JiajunQ. YiZ. HaoH. Inhibition of miR-9 decreases osteosarcoma cell proliferation.Bosn. J. Basic Med. Sci.2020202218225 31724522
    [Google Scholar]
  66. FengerJ.M. RobertsR.D. IwenofuO.H. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines.BMC Cancer201616178410.1186/s12885‑016‑2837‑5 27724924
    [Google Scholar]
  67. WangN. TanH.Y. FengY.G. ZhangC. ChenF. FengY. microRNA-23a in human cancer: Its roles, mechanisms and therapeutic relevance.Cancers (Basel)2018111710.3390/cancers11010007 30577536
    [Google Scholar]
  68. HeY. MengC. ShaoZ. WangH. YangS. MiR-23a functions as a tumor suppressor in osteosarcoma.Cell. Physiol. Biochem.20143451485149610.1159/000366353 25322765
    [Google Scholar]
  69. WangJ. LiuS. ShiJ. The role of miRNA in the diagnosis, prognosis, and treatment of osteosarcoma.Cancer Biother. Radiopharm.2019341060561310.1089/cbr.2019.2939 31674804
    [Google Scholar]
  70. SampsonV.B. YooS. KumarA. VetterN.S. KolbE.A. MicroRNAs and potential targets in osteosarcoma.Front Pediatr.201536910.3389/fped.2015.00069 26380245
    [Google Scholar]
  71. LiZ. NiJ. SongD. DingM. Regulatory mechanism of microRNA 128 in osteosarcoma tumorigenesis and evolution through targeting SASH1.Oncol. Lett.20181568687869410.3892/ol.2018.8397 29805606
    [Google Scholar]
  72. HuaY. JinZ. ZhouF. ZhangY.Q. ZhuangY. The expression significance of serum MiR-21 in patients with osteosarcoma and its relationship with chemosensitivity.Eur. Rev. Med. Pharmacol. Sci.2017211329892994 28742209
    [Google Scholar]
  73. WangT. JiF. DaiZ. XieY. YuanD. Increased expression of microRNA-191 as a potential serum biomarker for diagnosis and prognosis in human osteosarcoma.Cancer Biomark.201515554355010.3233/CBM‑150493 26406942
    [Google Scholar]
  74. HuangY.Z. ZhangJ. ShaoH.Y. ChenJ.P. ZhaoH.Y. MicroRNA-191 promotes osteosarcoma cells proliferation by targeting checkpoint kinase 2.Tumour Biol.20153686095610110.1007/s13277‑015‑3290‑9 25773391
    [Google Scholar]
  75. YangZ. ZhangY. ZhangX. Serum microRNA-221 functions as a potential diagnostic and prognostic marker for patients with osteosarcoma.Biomed. Pharmacother.20157515315810.1016/j.biopha.2015.07.018 26422796
    [Google Scholar]
  76. ZhuJ. LiuF. WuQ. LiuX. miR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN.Int. J. Mol. Med.20153651377138310.3892/ijmm.2015.2352 26397386
    [Google Scholar]
  77. ZhaoG. CaiC. YangT. MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma.PLoS One201381e5390610.1371/journal.pone.0053906 23372675
    [Google Scholar]
  78. ZhaoD. ChenY. ChenS. ZhengC. HuJ. LuoS. MiR-19a regulates the cell growth and apoptosis of osteosarcoma stem cells by targeting PTEN.Tumour Biol.201739510.1177/1010428317705341 28475001
    [Google Scholar]
  79. PanW. WangH. JianweiR. YeZ. MicroRNA-27a promotes proliferation, migration and invasion by targeting MAP2K4 in human osteosarcoma cells.Cell. Physiol. Biochem.201433240241210.1159/000356679 24556602
    [Google Scholar]
  80. GaoK. YinJ. DongJ. Deregulated WWOX is involved in a negative feedback loop with microRNA-214-3p in osteosarcoma.Int. J. Mol. Med.20163861850185610.3892/ijmm.2016.2800 27840941
    [Google Scholar]
  81. LiuC.J. YuK.L. LiuG.L. TianD.H. miR-214 promotes osteosarcoma tumor growth and metastasis by decreasing the expression of PTEN.Mol. Med. Rep.20151246261626610.3892/mmr.2015.4197 26252022
    [Google Scholar]
  82. HuangC. WangQ. MaS. SunY. VadamootooA.S. JinC. A four serum-miRNA panel serves as a potential diagnostic biomarker of osteosarcoma.Int. J. Clin. Oncol.201924897698210.1007/s10147‑019‑01433‑x 31111286
    [Google Scholar]
  83. GuZ. WuS. XuG. WuW. MaoB. ZhaoS. miR-487a performs oncogenic functions in osteosarcoma by targeting mRNA.Acta Biochim. Biophys. Sin. (Shanghai)202052663163710.1093/abbs/gmaa034 32409840
    [Google Scholar]
  84. DaiJ. LuL. KangL. ZhangJ. MiR-501-3p promotes osteosarcoma cell proliferation, migration and invasion by targeting BCL7A.Hum. Cell202134262463310.1007/s13577‑020‑00468‑x 33415690
    [Google Scholar]
  85. ZhaoY. XuK. LiuP. Post-transcriptional control of angiotensin II type 1 receptor regulates osteosarcoma cell death.Cell. Physiol. Biochem.20184541581158910.1159/000487719 29482191
    [Google Scholar]
  86. WangJ. WangB. ChenL.Q. miR-10b promotes invasion by targeting KLF4 in osteosarcoma cells.Biomed. Pharmacother.20168494795310.1016/j.biopha.2016.09.108 27764757
    [Google Scholar]
  87. MaC. ZhanC. YuanH. CuiY. ZhangZ. MicroRNA-603 functions as an oncogene by suppressing BRCC2 protein translation in osteosarcoma.Oncol. Rep.20163563257326410.3892/or.2016.4718 27035098
    [Google Scholar]
  88. ZhangP. GaoH. LiQ. ChenX. WuX. Downregulation of microRNA 660 inhibits cell proliferation and invasion in osteosarcoma by directly targeting forkhead box O1.Mol. Med. Rep.20181822433244010.3892/mmr.2018.9165 29901128
    [Google Scholar]
  89. XuN. YangW. LiuY. YanF. YuZ. MicroRNA-411 promoted the osteosarcoma progression by suppressing MTSS1 expression.Environ. Sci. Pollut. Res. Int.20182512120641207110.1007/s11356‑018‑1331‑9 29453719
    [Google Scholar]
  90. XieZ. XuJ. PengL. GaoY. ZhaoH. QuY. miR-149 promotes human osteocarcinoma progression via targeting bone morphogenetic protein 9 (BMP9).Biotechnol. Lett.2018401475510.1007/s10529‑017‑2445‑8 28956179
    [Google Scholar]
  91. ZhouC. TanW. LvH. GaoF. SunJ. Hypoxia-inducible microRNA-488 regulates apoptosis by targeting Bim in osteosarcoma.Cell Oncol. (Dordr.)201639546347110.1007/s13402‑016‑0288‑2 27376839
    [Google Scholar]
  92. CaiQ. ZengS. DaiX. WuJ. MaW. miR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1.Oncol. Rep.20173852993300010.3892/or.2017.5983 29048685
    [Google Scholar]
  93. GaoY. LuoL. LiS. YangC. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression.Biochem. Biophys. Res. Commun.2014444223023410.1016/j.bbrc.2014.01.061 24462867
    [Google Scholar]
  94. SunZ. LiuQ. HongH. ZhangH. ZhangT. miR-19 promotes osteosarcoma progression by targeting SOCS6.Biochem. Biophys. Res. Commun.201849511363136910.1016/j.bbrc.2017.10.002 28986253
    [Google Scholar]
  95. MengQ. DaiM. NieX. MicroRNA-19 contributes to the malignant phenotypes of osteosarcoma in vitro by targeting Pax6.Tumour Biol.201840110.1177/1010428317744704 29345189
    [Google Scholar]
  96. PengN. MiaoZ. WangL. LiuB. WangG. GuoX. MiR-378 promotes the cell proliferation of osteosarcoma through down-regulating the expression of Kruppel-like factor 9.Biochem. Cell Biol.201896551552110.1139/bcb‑2017‑0186 29490146
    [Google Scholar]
  97. JiangX. LiX. WuF. Overexpression of miR-92a promotes the tumor growth of osteosarcoma by suppressing F-box and WD repeat-containing protein 7.Gene2017606101610.1016/j.gene.2017.01.002 28069547
    [Google Scholar]
  98. ZhouZ. WangZ. WeiH. WuS. WangX. XiaoJ. Promotion of tumour proliferation, migration and invasion by miR-92b in targeting RECK in osteosarcoma.Clin. Sci. (Lond.)20161301192193010.1042/CS20150509 26993249
    [Google Scholar]
  99. YuanH. GaoY. MicroRNA-1908 is upregulated in human osteosarcoma and regulates cell proliferation and migration by repressing PTEN expression.Oncol. Rep.20153452706271410.3892/or.2015.4242 26328886
    [Google Scholar]
  100. ChenB. BaoY. ChenX. Mir-664 promotes osteosarcoma cells proliferation via downregulating of FOXO4.Biomed. Pharmacother.2015751710.1016/j.biopha.2015.08.012 26463624
    [Google Scholar]
  101. LiQ.C. XuH. WangX. WangT. WuJ. miR-34a increases cisplatin sensitivity of osteosarcoma cells in vitro through up-regulation of c-Myc and Bim signal.Cancer Biomark.201721113514410.3233/CBM‑170452 29060932
    [Google Scholar]
  102. LianH. ZhouY. SunZ. LiuK. MicroRNA34a is associated with chemotherapy resistance, metastasis, recurrence, survival, and prognosis in patient with osteosarcoma.Medicine (Baltimore)202210138e3072210.1097/MD.0000000000030722 36197268
    [Google Scholar]
  103. BaeY. ZengH.C. ChenY.T. miRNA-34c suppresses osteosarcoma progression in vivo by targeting notch and E2F.JBMR Plus202265e1062310.1002/jbm4.10623 35509638
    [Google Scholar]
  104. GindinY. JiangY. FrancisP. miR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1.Front. Genet.2015623310.3389/fgene.2015.00233 26191074
    [Google Scholar]
  105. FujiiR. OsakaE. SatoK. TokuhashiY. MiR-1 suppresses proliferation of osteosarcoma cells by up-regulating p21 via PAX3.Cancer Genomics Proteomics2019161717910.21873/cgp.20113 30587501
    [Google Scholar]
  106. LiuW. ZhaoX. ZhangY.J. FangG.W. XueY. MicroRNA-375 as a potential serum biomarker for the diagnosis, prognosis, and chemosensitivity prediction of osteosarcoma.J. Int. Med. Res.201846397598310.1177/0300060517734114 29115164
    [Google Scholar]
  107. ShiZ. ChuX. WuY. MicroRNA-375 functions as a tumor suppressor in osteosarcoma by targeting PIK3CA.Tumour Biol.201536118579858410.1007/s13277‑015‑3614‑9 26036761
    [Google Scholar]
  108. YaoZ.S. LiC. LiangD. Diagnostic and prognostic implications of serum miR-101 in osteosarcoma.Cancer Biomark.201822112713310.3233/CBM‑171103 29630525
    [Google Scholar]
  109. ZhangK. DongC. ChenM. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma.Theranostics202010141142510.7150/thno.33482 31903129
    [Google Scholar]
  110. GuoS. BaiR. LiuW. miR-22 inhibits osteosarcoma cell proliferation and migration by targeting HMGB1 and inhibiting HMGB1-mediated autophagy.Tumour Biol.20143577025703410.1007/s13277‑014‑1965‑2 24752578
    [Google Scholar]
  111. ZhouX. NatinoD. ZhaiX. GaoZ. HeX. MicroRNA 22 inhibits the proliferation and migration, and increases the cisplatin sensitivity, of osteosarcoma cells.Mol. Med. Rep.20181757209721710.3892/mmr.2018.8790 29568877
    [Google Scholar]
  112. CongC. WangW. TianJ. GaoT. ZhengW. ZhouC. Identification of serum miR-124 as a biomarker for diagnosis and prognosis in osteosarcoma.Cancer Biomark.201821244945410.3233/CBM‑170672 29125481
    [Google Scholar]
  113. YangZ. WaQ.D. LuC. PanW. LuZ.M. AoJ. miR 328 3p enhances the radiosensitivity of osteosarcoma and regulates apoptosis and cell viability via H2AX.Oncol. Rep.2018392545553 29207178
    [Google Scholar]
  114. DaiN. QingY. CunY. miR-513a-5p regulates radiosensitivity of osteosarcoma by targeting human apurinic/apyrimidinic endonuclease.Oncotarget2018939254142542610.18632/oncotarget.11003 29875998
    [Google Scholar]
  115. LiuQ. SongY. DuanX. ChangY. GuoJ. MiR-92a inhibits the progress of osteosarcoma cells and increases the cisplatin sensitivity by targeting Notch1.BioMed Res. Int.20182018987069310.1155/2018/9870693
    [Google Scholar]
  116. XuW. LiZ. ZhuX. XuR. XuY. miR-29 family inhibits resistance to methotrexate and promotes cell apoptosis by targeting COL3A1 and MCL1 in osteosarcoma.Med. Sci. Monit.2018248812882110.12659/MSM.911972 30518744
    [Google Scholar]
  117. ZhuK. LiuL. ZhangJ. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6.Protein Cell20167643444410.1007/s13238‑016‑0277‑2 27230400
    [Google Scholar]
  118. ZhangM. WangD. ZhuT. YinR. miR-214-5p targets ROCK1 and suppresses proliferation and invasion of human osteosarcoma cells.Oncol. Res.2017251758110.3727/096504016X14719078133401 28081735
    [Google Scholar]
  119. JiQ. XuX. LiL. GoodmanS.B. BiW. XuM. XuY. FanZ. MaloneyW.J. YeQ. WangY. miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14.Cell Death Dis.2017810e3103e310.1038/cddis.2017.499 29022909
    [Google Scholar]
  120. SunB. YangM. LiM. WangF. The microRNA-217 functions as a tumor suppressor and is frequently downregulated in human osteosarcoma.Biomed. Pharmacother.201571586310.1016/j.biopha.2015.02.014 25960216
    [Google Scholar]
  121. WeiR. DengZ. SuJ. miR-217 targeting Wnt5a in osteosarcoma functions as a potential tumor suppressor.Biomed. Pharmacother.20157215816410.1016/j.biopha.2015.04.012 26054690
    [Google Scholar]
  122. WuH LiW ZhangM ZhuS ZhangD WangX. Inhibitory roles of miR-320 in osteosarcoma via regulating E2F1.J Cancer Res Ther201612687110.4103/0973‑1482.191635
    [Google Scholar]
  123. ChenH. GaoS. ChengC. MiR-323a-3p suppressed the glycolysis of osteosarcoma via targeting LDHA.Hum. Cell201831430030910.1007/s13577‑018‑0215‑0 30088225
    [Google Scholar]
  124. CaoL. WangJ. WangP.Q. MiR-326 is a diagnostic biomarker and regulates cell survival and apoptosis by targeting Bcl-2 in osteosarcoma.Biomed. Pharmacother.20168482883510.1016/j.biopha.2016.10.008 27723574
    [Google Scholar]
  125. SongB. WangY. TitmusM.A. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells.Mol. Cancer2010919610.1186/1476‑4598‑9‑96 20433742
    [Google Scholar]
  126. ZhaoH. LiM. LiL. YangX. LanG. ZhangY. MiR-133b is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis.PLoS One2013812e8357110.1371/journal.pone.0083571 24391788
    [Google Scholar]
  127. NovelloC. PazzagliaL. CingolaniC. miRNA expression profile in human osteosarcoma: Role of miR-1 and miR-133b in proliferation and cell cycle control.Int. J. Oncol.201342266767510.3892/ijo.2012.1717 23229283
    [Google Scholar]
  128. LiG. CaiM. FuD. Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma.Cell. Physiol. Biochem.20123061481149010.1159/000343336 23208072
    [Google Scholar]
  129. ZhuJ. FengY. KeZ. Down-regulation of miR-183 promotes migration and invasion of osteosarcoma by targeting Ezrin.Am. J. Pathol.201218062440245110.1016/j.ajpath.2012.02.023 22525461
    [Google Scholar]
  130. ZhaoH. GuoM. ZhaoG. miR-183 inhibits the metastasis of osteosarcoma via downregulation of the expression of Ezrin in F5M2 cells.Int. J. Mol. Med.20123051013102010.3892/ijmm.2012.1111 22922800
    [Google Scholar]
  131. ZhengZ. BaoF. ChenX. HuangH. ZhangX. MicroRNA-330-3p expression indicates good prognosis and suppresses cell proliferation by targeting Bmi-1 in osteosarcoma.Cell. Physiol. Biochem.201846244245010.1159/000488612 29614499
    [Google Scholar]
  132. ZhangS. LiuL. LvZ. LiQ. GongW. WuH. MicroRNA-342-3p inhibits the proliferation, migration, and invasion of osteosarcoma cells by targeting astrocyte-elevated gene-1 (AEG-1).Oncol. Res.20172591505151510.3727/096504017X14886485417426 28276315
    [Google Scholar]
  133. XuY. ChuH. ZhouY. WangJ. DongC. YinR. miR-365 functions as a tumor suppressor by directly targeting CYR61 in osteosarcoma.Biomed. Pharmacother.20189853153710.1016/j.biopha.2017.12.086 29287201
    [Google Scholar]
  134. JinY. PengD. ShenY. MicroRNA-376c inhibits cell proliferation and invasion in osteosarcoma by targeting to transforming growth factor-alpha.DNA Cell Biol.201332630230910.1089/dna.2013.1977 23631646
    [Google Scholar]
  135. ZhouG. JiangH. MaL. MicroRNA 376a inhibits cell proliferation and invasion in osteosarcoma via directly targeting SATB1.Mol. Med. Rep.20181833521352810.3892/mmr.2018.9344 30085330
    [Google Scholar]
  136. WangL. ShaoJ. ZhangX. XuM. ZhaoJ. microRNA-377 suppresses the proliferation of human osteosarcoma MG-63 cells by targeting CDK6.Tumour Biol.20153653911391710.1007/s13277‑014‑3034‑2 25577249
    [Google Scholar]
  137. JiangZ. JiangC. YuC. FangJ. MicroRNA-208b inhibits human osteosarcoma progression by targeting ROR2.Tumour Biol.201739610.1177/1010428317705751 28618961
    [Google Scholar]
  138. WangY. SunS. XuJ. LuoY. XinY. ZhaoX. MicroRNA-381 suppresses the proliferation of osteosarcoma cells through LRH-1/Wnt/β-catenin signaling pathway.Oncol. Rep.2018392589596 29207112
    [Google Scholar]
  139. ZhangJ. HouW. JiaJ. ZhaoY. ZhaoB. MiR‐409‐3p regulates cell proliferation and tumor growth by targeting E74‐like factor 2 in osteosarcoma.FEBS Open Bio20177334835710.1002/2211‑5463.12177 28286730
    [Google Scholar]
  140. YanH. ZhangB. FangC. ChenL. miR-340 alleviates chemoresistance of osteosarcoma cells by targeting ZEB1.Anticancer Drugs201829544044810.1097/CAD.0000000000000614 29494357
    [Google Scholar]
  141. LongX. LinX.J. P65‐mediated miR‐590 inhibition modulates the chemoresistance of osteosarcoma to doxorubicin through targeting wild‐type p53‐induced phosphatase 1.J. Cell. Biochem.201912045652566510.1002/jcb.27849 30387173
    [Google Scholar]
  142. XuH. LiuX. ZhaoJ. Down-regulation of miR-3928 promoted osteosarcoma growth.Cell. Physiol. Biochem.20143351547155610.1159/000358718 24854843
    [Google Scholar]
  143. JiangW. ZhengJ. YuT. WangJ. Overexpression of microRNA-495 suppresses the proliferation and invasion and induces the apoptosis of osteosarcoma cells by targeting high-mobility group nucleosome-binding domain 5.Oncol. Rep.20173821099110710.3892/or.2017.5715 28627703
    [Google Scholar]
  144. RuN. ZhangF. LiangJ. MiR-564 is down-regulated in osteosarcoma and inhibits the proliferation of osteosarcoma cells via targeting Akt.Gene201864516316910.1016/j.gene.2017.12.028 29248580
    [Google Scholar]
  145. WangW. LiY. ZhiS. LncRNA-ROR/microRNA-185-3p/YAP1 axis exerts function in biological characteristics of osteosarcoma cells.Genomics2021113145046110.1016/j.ygeno.2020.09.009 32898639
    [Google Scholar]
  146. WangX. LiC. YaoW. TianZ. LiuZ. GeH. MicroRNA-761 suppresses tumor progression in osteosarcoma via negatively regulating ALDH1B1.Life Sci.202026211854410.1016/j.lfs.2020.118544 33035586
    [Google Scholar]
  147. ZhaoD. JiaP. WangW. ZhangG. VEGF-mediated suppression of cell proliferation and invasion by miR-410 in osteosarcoma.Mol. Cell. Biochem.20154001-2879510.1007/s11010‑014‑2265‑2 25385479
    [Google Scholar]
  148. CuiS.Q. WangH. MicroRNA-144 inhibits the proliferation, apoptosis, invasion, and migration of osteosarcoma cell line F5M2.Tumour Biol.20153696949695810.1007/s13277‑015‑3396‑0 25854173
    [Google Scholar]
  149. LiQ. LiH. ZhaoX. DNA methylation mediated downregulation of miR-449c controls osteosarcoma cell cycle progression by directly targeting oncogene c-Myc.Int. J. Biol. Sci.20171381038105010.7150/ijbs.19476 28924385
    [Google Scholar]
  150. LiuM. XiushengH. XiaoX. WangY. Overexpression of miR-422a inhibits cell proliferation and invasion, and enhances chemosensitivity in osteosarcoma cells.Oncol. Rep.20163663371337810.3892/or.2016.5182 27779704
    [Google Scholar]
  151. DengY. LuanF. ZengL. ZhangY. MaK. MiR-429 suppresses the progression and metastasis of osteosarcoma by targeting ZEB1.EXCLI J.201716618627 28694763
    [Google Scholar]
  152. LiZ. WuS. LvS. WangH. WangY. GuoQ. Suppression of liver receptor homolog-1 by microRNA-451 represses the proliferation of osteosarcoma cells.Biochem. Biophys. Res. Commun.2015461345045510.1016/j.bbrc.2015.04.013 25869073
    [Google Scholar]
  153. LiuW. LiuS.Y. HeY.B. MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor.Biomed. Pharmacother.20178762162710.1016/j.biopha.2016.12.121 28086136
    [Google Scholar]
  154. SongX. XieY. LiuY. ShaoM. YangW. MicroRNA-492 overexpression exerts suppressive effects on the progression of osteosarcoma by targeting PAK7.Int. J. Mol. Med.201740389189710.3892/ijmm.2017.3046 28677719
    [Google Scholar]
  155. SunZ. LiA. YuZ. LiX. GuoX. ChenR. MicroRNA-497-5p suppresses tumor cell growth of osteosarcoma by targeting ADP ribosylation factor-like protein 2.Cancer Biother. Radiopharm.2017321037137810.1089/cbr.2017.2268 29265919
    [Google Scholar]
  156. YuanW. WangD. LiuY. miR-494 inhibits cell proliferation and metastasis via targeting of CDK6 in osteosarcoma.Mol. Med. Rep.20171668627863410.3892/mmr.2017.7709 28990071
    [Google Scholar]
  157. YaoJ. QinL. MiaoS. WangX. WuX. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1.Oncol. Lett.20161231840184810.3892/ol.2016.4827 27602115
    [Google Scholar]
  158. HuM. YuanX. LiuY. IL-1β-induced NF-κB activation down-regulates miR-506 expression to promotes osteosarcoma cell growth through JAG1.Biomed. Pharmacother.2017951147115510.1016/j.biopha.2017.08.120 28926924
    [Google Scholar]
  159. CaiC.K. ZhaoG.Y. TianL.Y. miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma.Oncol. Rep.20122851764177010.3892/or.2012.1995 22922827
    [Google Scholar]
  160. ChenL. WangQ. WangG. miR‐16 inhibits cell proliferation by targeting IGF1R and the Raf1–MEK1/2–ERK1/2 pathway in osteosarcoma.FEBS Lett.201358791366137210.1016/j.febslet.2013.03.007 23507142
    [Google Scholar]
  161. DongJ. BiB. ZhangL. GaoK. GLIPR1 inhibits the proliferation and induces the differentiation of cancer-initiating cells by regulating miR-16 in osteosarcoma.Oncol. Rep.20163631585159110.3892/or.2016.4949 27460987
    [Google Scholar]
  162. DingJ. ShaL. ShenP. HuangM. CaiQ. LiJ. MicroRNA-18a inhibits cell growth and induces apoptosis in osteosarcoma by targeting MED27.Int. J. Oncol.201853132933810.3892/ijo.2018.4374 29693135
    [Google Scholar]
  163. LiuK. SunX. ZhangY. LiuL. YuanQ. MiR-598: A tumor suppressor with biomarker significance in osteosarcoma.Life Sci.201718814114810.1016/j.lfs.2017.09.003 28882648
    [Google Scholar]
  164. LuoZ. WuG. ZhangD. LiuJ. RanR. microRNA 625 targets Yes associated protein 1 to suppress cell proliferation and invasion of osteosarcoma.Mol. Med. Rep.201817120052011 29257207
    [Google Scholar]
  165. SongL. YangJ. DuanP. MicroRNA-24 inhibits osteosarcoma cell proliferation both in vitro and in vivo by targeting LPAATβ.Arch. Biochem. Biophys.2013535212813510.1016/j.abb.2013.04.001 23578572
    [Google Scholar]
  166. LiuZ. LiuZ. ZhangY. LiY. LiuB. ZhangK. miR-24 represses metastasis of human osteosarcoma cells by targeting Ack1 via AKT/MMPs pathway.Biochem. Biophys. Res. Commun.2017486221121710.1016/j.bbrc.2017.02.045 28189676
    [Google Scholar]
  167. TanX. FanS. WuW. ZhangY. MicroRNA-26a inhibits osteosarcoma cell proliferation by targeting IGF-1.Bone Res.2015311503310.1038/boneres.2015.33 27468358
    [Google Scholar]
  168. LuJ. SongG. TangQ. MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1.Oncogene201736223124110.1038/onc.2016.194 27270422
    [Google Scholar]
  169. DuJ.Y. WangL.F. WangQ. YuL.D. miR-26b inhibits proliferation, migration, invasion and apoptosis induction via the downregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 driven glycolysis in osteosarcoma cells.Oncol. Rep.20153341890189810.3892/or.2015.3797 25672572
    [Google Scholar]
  170. ZhengW.D. ZhouF.L. LinN. MicroRNA-26b inhibits osteosarcoma cell migration and invasion by down-regulating PFKFB3 expression.Genet. Mol. Res.2015144168721687910.4238/2015.December.14.14 26681033
    [Google Scholar]
  171. XiaoY. ZhaoQ. DuB. ChenH. ZhouD.Z. MicroRNA-187 inhibits growth and metastasis of osteosarcoma by downregulating S100A4.Cancer Invest.20183611910.1080/07357907.2017.1415348 29303365
    [Google Scholar]
  172. XiaoQ. YangY. AnQ. QiY. MicroRNA-100 suppresses human osteosarcoma cell proliferation and chemo-resistance via ZNRF2.Oncotarget2017821346783468610.18632/oncotarget.16149 28416774
    [Google Scholar]
  173. HuangJ. GaoK. LinJ. WangQ. MicroRNA-100 inhibits osteosarcoma cell proliferation by targeting Cyr61.Tumour Biol.20143521095110010.1007/s13277‑013‑1146‑8 24317814
    [Google Scholar]
  174. LiuY. ZhuS.T. WangX. MiR-100 inhibits osteosarcoma cell proliferation, migration, and invasion and enhances chemosensitivity by targeting IGFIR.Technol. Cancer Res. Treat.2016155NP40NP4810.1177/1533034615601281 26306402
    [Google Scholar]
  175. TaoT. ShenQ. LuoJ. XuY. LiangW. MicroRNA-125a regulates cell proliferation via directly targeting E2F2 in osteosarcoma.Cell. Physiol. Biochem.201743276877410.1159/000481560 28950256
    [Google Scholar]
  176. GuoT. PanG. MicroRNA-136 functions as a tumor suppressor in osteosarcoma via regulating metadherin.Cancer Biomark.2018221798710.3233/CBM‑170970 29562498
    [Google Scholar]
  177. ZhangS. ZhaoY. WangL. MicroRNA-198 inhibited tumorous behaviors of human osteosarcoma through directly targeting ROCK1.Biochem. Biophys. Res. Commun.2016472355756510.1016/j.bbrc.2016.03.040 26970302
    [Google Scholar]
  178. DongD. GongY. ZhangD. BaoH. GuG. miR-874 suppresses the proliferation and metastasis of osteosarcoma by targeting E2F3.Tumour Biol.20163756447645510.1007/s13277‑015‑4527‑3 26631042
    [Google Scholar]
  179. WangX. LiuJ. TangY. HongL. ZengZ. TanG. MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma.Tumour Biol.20163712163671637510.1007/s13277‑016‑5379‑1 28050866
    [Google Scholar]
  180. SunZ. ZhangT. HongH. LiuQ. ZhangH. miR-202 suppresses proliferation and induces apoptosis of osteosarcoma cells by downregulating Gli2.Mol. Cell. Biochem.20143971-227728310.1007/s11010‑014‑2195‑z 25156120
    [Google Scholar]
  181. JiangW. LiuJ. XuT. YuX. MiR‐329 suppresses osteosarcoma development by downregulating Rab10.FEBS Lett.2016590172973298110.1002/1873‑3468.12337 27487475
    [Google Scholar]
  182. WangL. HuK. ChaoY. MicroRNA-1301 inhibits migration and invasion of osteosarcoma cells by targeting BCL9.Gene201867910010710.1016/j.gene.2018.08.078 30172867
    [Google Scholar]
  183. FanL. ZhuC. QiuR. MicroRNA-661 enhances TRAIL or STS induced osteosarcoma cell apoptosis by modulating the expression of cytochrome c1.Cell. Physiol. Biochem.20174151935194610.1159/000472380 28391262
    [Google Scholar]
  184. LuoZ. LiD. LuoX. Decreased expression of miR-548c-3p in osteosarcoma contributes to cell proliferation via targeting ITGAV.Cancer Biother. Radiopharm.201631515315810.1089/cbr.2016.1995 27310302
    [Google Scholar]
  185. SunX. DaiG. YuL. HuQ. ChenJ. GuoW. miR-143-3p inhibits the proliferation, migration and invasion in osteosarcoma by targeting FOSL2.Sci. Rep.20188160610.1038/s41598‑017‑18739‑3 29330462
    [Google Scholar]
  186. HanK. ChenX. BianN. MicroRNA profiling identifies miR-195 suppresses osteosarcoma cell metastasis by targeting CCND1.Oncotarget20156118875888910.18632/oncotarget.3560 25823925
    [Google Scholar]
  187. XingB. RenC. Tumor-suppressive miR-99a inhibits cell proliferation via targeting of TNFAIP8 in osteosarcoma cells.Am. J. Transl. Res.20168210821090 27158394
    [Google Scholar]
  188. LiuJ.D. XinQ. TaoC.S. Serum miR-300 as a diagnostic and prognostic biomarker in osteosarcoma.Oncol. Lett.20161253912391810.3892/ol.2016.5214 27895748
    [Google Scholar]
  189. JiaJ. YinP. HanG. XuM. WangW. BiW. MicroRNA-300 decreases cell viability, inhibits migration and promotes apoptosis of osteosarcoma cells via downregulation of Twist1.Mol. Med. Rep.20171633613361810.3892/mmr.2017.7023 28765882
    [Google Scholar]
  190. XinM. QiaoZ. LiJ. miR-22 inhibits tumor growth and metastasis by targeting ATP citrate lyase: Evidence in osteosarcoma, prostate cancer, cervical cancer and lung cancer.Oncotarget2016728442524426510.18632/oncotarget.10020 27317765
    [Google Scholar]
  191. ZhiW. FengQ. MingzhuZ. MiR-140 targets Wnt1 to inhibit the proliferation and enhance drug sensitivity in osteosarcoma cells.Cell. Mol. Biol.202268114014610.14715/cmb/2022.68.1.18 35809318
    [Google Scholar]
  192. JiangY. ZhouC. GaoQ. FAM64A promotes osteosarcoma cell growth and metastasis and is mediated by miR-493.J. Oncol.20202020251829710.1155/2020/2518297
    [Google Scholar]
  193. DaherM. ZalaquettZ. ChalhoubR. Molecular and biologic biomarkers of Ewing sarcoma: A systematic review.J. Bone Oncol.20234010048210.1016/j.jbo.2023.100482 37180735
    [Google Scholar]
  194. DyllaL. MooreC. JedlickaP. MicroRNAs in ewing sarcoma.Front. Oncol.201336510.3389/fonc.2013.00065 23543617
    [Google Scholar]
  195. LuQ. LuM. LiD. ZhangS. MicroRNA 34b promotes proliferation, migration and invasion of Ewing’s sarcoma cells by downregulating Notch1.Mol. Med. Rep.20181843577358810.3892/mmr.2018.9365 30106161
    [Google Scholar]
  196. KawanoM. TanakaK. ItonagaI. IwasakiT. TsumuraH. MicroRNA-301a promotes cell proliferation via PTEN targeting in Ewing’s sarcoma cells.Int. J. Oncol.20164841531154010.3892/ijo.2016.3379 26846737
    [Google Scholar]
  197. SatterfieldL. ShuckR. KurenbekovaL. miR‐130b directly targets ARHGAP1 to drive activation of a metastatic CDC42‐PAK1‐AP1 positive feedback loop in Ewing sarcoma.Int. J. Cancer2017141102062207510.1002/ijc.30909 28748534
    [Google Scholar]
  198. KawanoM. TanakaK. ItonagaI. IwasakiT. TsumuraH. MicroRNA-20b promotes cell proliferation via targeting of TGF-β receptor II and upregulates MYC expression in Ewing’s sarcoma cells.Int. J. Oncol.20175161842185010.3892/ijo.2017.4155 29039480
    [Google Scholar]
  199. FranzettiG-A. Laud-DuvalK. BellangerD. SternM-H. Sastre-GarauX. DelattreO. MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor.Oncogene201332333915392110.1038/onc.2012.403 22986530
    [Google Scholar]
  200. LiJ. YouT. JingJ. MiR‐125b inhibits cell biological progression of Ewing’s sarcoma by suppressing the PI3K/Akt signalling pathway.Cell Prolif.201447215216010.1111/cpr.12093 24517182
    [Google Scholar]
  201. IidaK. FukushiJ. MatsumotoY. miR-125b develops chemoresistance in Ewing sarcoma/primitive neuroectodermal tumor.Cancer Cell Int.20131312110.1186/1475‑2867‑13‑21 23497288
    [Google Scholar]
  202. ChaoL-M. SunW. ChenH. LiuB.Y. LiP.F. ZhaoD.W. MicroRNA-31 inhibits osteosarcoma cell proliferation, migration and invasion by targeting PIK3C2A.Eur. Rev. Med. Pharmacol. Sci.2018222172057213 30468462
    [Google Scholar]
  203. LiY. ShaoG. ZhangM. miR-124 represses the mesenchymal features and suppresses metastasis in Ewing sarcoma.Oncotarget201786102741028610.18632/oncotarget.14394 28055964
    [Google Scholar]
  204. TanakaK. KawanoM. ItonagaI. Tumor suppressive microRNA-138 inhibits metastatic potential via the targeting of focal adhesion kinase in Ewing’s sarcoma cells.Int. J. Oncol.20164831135114410.3892/ijo.2016.3317 26782922
    [Google Scholar]
  205. ZhouX. ChenJ. XiaoQ. MicroRNA-638 inhibits cell growth and tubule formation by suppressing VEGFA expression in human Ewing sarcoma cells.Biosci. Rep.2018381BSR2017101710.1042/BSR20171017 29263143
    [Google Scholar]
  206. ZhangS LiD JiaoGJ WangHL YanTB miR-185 suppresses progression of Ewing's sarcoma via inhibiting the PI3K/AKT and Wnt/β-catenin pathways.Onco Targets Ther2018117967797710.2147/OTT.S167771
    [Google Scholar]
  207. ChenJ. ZhouX. XiaoQ. MiR-107 suppresses cell proliferation and tube formation of Ewing sarcoma cells partly by targeting HIF-1β.Hum. Cell2018311424910.1007/s13577‑017‑0183‑9 29075999
    [Google Scholar]
  208. YeC. YuX. LiuX. DaiM. ZhangB. miR-30d inhibits cell biological progression of Ewing’s sarcoma by suppressing the MEK/ERK and PI3K/Akt pathways in vitro.Oncol. Lett.202121213310.3892/ol.2020.12394
    [Google Scholar]
  209. MooreC. ParrishJ.K. JedlickaP. MiR-193b, downregulated in Ewing Sarcoma, targets the ErbB4 oncogene to inhibit anchorage-independent growth.PLoS One2017125e017802810.1371/journal.pone.0178028 28542597
    [Google Scholar]
  210. LiuY. ZhaoL. LiD. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development.Protein Cell201341293294110.1007/s13238‑013‑3092‑z 24203759
    [Google Scholar]
  211. TsaiC.H. TsaiH.C. HuangH.N. Resistin promotes tumor metastasis by down-regulation of miR-519d through the AMPK/p38 signaling pathway in human chondrosarcoma cells.Oncotarget20156125827010.18632/oncotarget.2724 25404641
    [Google Scholar]
  212. JiangD. ZhengX. ShanW. ShanY. The overexpression of miR-30a affects cell proliferation of chondrosarcoma via targeting Runx2.Tumour Biol.20163755933594010.1007/s13277‑015‑4454‑3 26596830
    [Google Scholar]
  213. LuN. LinT. WangL. Association of SOX4 regulated by tumor suppressor miR-30a with poor prognosis in low-grade chondrosarcoma.Tumour Biol.20153653843385210.1007/s13277‑014‑3026‑2 25572678
    [Google Scholar]
  214. LiangW. LiX. LiY. Gallic acid induces apoptosis and inhibits cell migration by upregulating miR-518b in SW1353 human chondrosarcoma cells.Int. J. Oncol.2014441919810.3892/ijo.2013.2155 24173143
    [Google Scholar]
  215. YangW.H. ChangA.C. WangS.W. Leptin promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-27b in human chondrosarcoma cells.Sci. Rep.2016612864710.1038/srep28647 27345723
    [Google Scholar]
  216. ZhuZ. WangC.P. ZhangY.F. NieL. MicroRNA-100 resensitizes resistant chondrosarcoma cells to cisplatin through direct targeting of mTOR.Asian Pac. J. Cancer Prev.201415291792310.7314/APJCP.2014.15.2.917 24568519
    [Google Scholar]
  217. HuangK. ChenJ. YangM.S. TangY.J. PanF. Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells.Cancer Biomark.201718323123910.3233/CBM‑160102 28085008
    [Google Scholar]
  218. SuC.M. TangC.H. ChiM.J. Resistin facilitates VEGF-C-associated lymphangiogenesis by inhibiting miR-186 in human chondrosarcoma cells.Biochem. Pharmacol.201815423424210.1016/j.bcp.2018.05.001 29730230
    [Google Scholar]
  219. ChenS.S. TangC.H. ChieM.J. Resistin facilitates VEGF-A-dependent angiogenesis by inhibiting miR-16-5p in human chondrosarcoma cells.Cell Death Dis.20191013110.1038/s41419‑018‑1241‑2 30631040
    [Google Scholar]
  220. TangXY ZhengW DingM miR-125b acts as a tumor suppressor in chondrosarcoma cells by the sensitization to doxorubicin through direct targeting the ErbB2-regulated glucose metabolism.Drug Des Devel Ther2016105718310.2147/DDDT.S90530
    [Google Scholar]
  221. TanT.W. ChouY.E. YangW.H. HsuC.J. FongY.C. TangC.H. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126.Int. Immunopharmacol.201422110711410.1016/j.intimp.2014.06.029 24975661
    [Google Scholar]
  222. WangC.Q. HuangY.W. WangS.W. Amphiregulin enhances VEGF-A production in human chondrosarcoma cells and promotes angiogenesis by inhibiting miR-206 via FAK/c-Src/PKCδ pathway.Cancer Lett.201738526127010.1016/j.canlet.2016.10.010 27826039
    [Google Scholar]
  223. TzengH.E. LinS.L. ThadevoosL.A. Nerve growth factor promotes lysyl oxidase-dependent chondrosarcoma cell metastasis by suppressing miR-149-5p synthesis.Cell Death Dis.20211212110110.1038/s41419‑021‑04392‑2 34815382
    [Google Scholar]
  224. UrdinezJ. BoroA. MazumdarA. The miR‐143/145 cluster, a novel diagnostic biomarker in chondrosarcoma, acts as a tumor suppressor and directly inhibits Fascin‐1.J. Bone Miner. Res.20203561077109110.1002/jbmr.3976 32027760
    [Google Scholar]
  225. MakI.W.Y. SinghS. TurcotteR. GhertM. The epigenetic regulation of SOX9 by miR-145 in human chondrosarcoma.J. Cell. Biochem.20151161374410.1002/jcb.24940 25145279
    [Google Scholar]
  226. Martinez-SanchezA. DudekK.A. MurphyC.L. Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145).J. Biol. Chem.2012287291692410.1074/jbc.M111.302430 22102413
    [Google Scholar]
  227. ChivukulaR.R. MendellJ.T. Abate and switch: miR-145 in stem cell differentiation.Cell2009137460660810.1016/j.cell.2009.04.059 19450510
    [Google Scholar]
  228. WangL.H. LinC.Y. LiuS.C. CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells.Oncotarget2016724368963690810.18632/oncotarget.9213 27166194
    [Google Scholar]
  229. LiuG.T. HuangY.L. TzengH.E. TsaiC.H. WangS.W. TangC.H. CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells.Cancer Lett.2015357247648710.1016/j.canlet.2014.11.015 25444917
    [Google Scholar]
  230. BaoX. RenT. HuangY. Knockdown of long non-coding RNA HOTAIR increases miR-454-3p by targeting Stat3 and Atg12 to inhibit chondrosarcoma growth.Cell Death Dis.201782e260510.1038/cddis.2017.31 28182000
    [Google Scholar]
  231. VeysC. BenmoussaA. ContentinR. Tumor suppressive role of miR-342-5p in human chondrosarcoma cells and 3D organoids.Int. J. Mol. Sci.20212211559010.3390/ijms22115590 34070455
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366298799240625115843
Loading
/content/journals/mirna/10.2174/0122115366298799240625115843
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bone metastases; chondrosarcoma; ewing's sarcoma; MicroRNA; osteosarcoma; tumor cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test