Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Lung cancer has a high mortality rate among cancers in both women and men. Currently, lung cáncer diagnosis is made with clinical examination, low-dose CT scan and molecular-based methods and its treatment options include chemotherapy, surgery, radiotherapy or immunotherapy. However, the life expectancy of lung cancer is not very high, and still it is usually diagnosed very lately, which leads to poorer prognosis. MicroRNAs [miRNAs] are small noncoding RNAs that regulate many diverse activities in the cell that can affect tumorigenesis by regulating many cell functions related to cancer, such as cell cycle, metastasis, angiogenesis, metabolism, and apoptosis. Also, it can have a potential diagnostic, therapeutic, and prognostic value for lung cancer. MiR320a is a promising microRNA that may help us in the diagnosis, treatment and prognosis of lung cancer, but some aspects of its clinical application are still vague, especially its effect on heavy smokers, delivery mechanism, toxicity and lack of reliable critical value. In this paper, we examined its comprehensive molecular interactions that lead to its tumor suppressor effect, and we reviewed its clinical application until now.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366296148240530072346
2024-11-01
2024-11-22
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. OberndorferF. MüllauerL. Molecular pathology of lung cancer: Current status and perspectives.Curr. Opin. Oncol.2018302697610.1097/CCO.0000000000000429 29251665
    [Google Scholar]
  3. NicholsonA.G. TsaoM.S. BeasleyM.B. The 2021 WHO Classification of Lung Tumors: Impact of Advances Since 2015.J. Thorac. Oncol.202217336238710.1016/j.jtho.2021.11.003 34808341
    [Google Scholar]
  4. FieldJ.K. OudkerkM. PedersenJ.H. DuffyS.W. Prospects for population screening and diagnosis of lung cancer.Lancet2013382989373274110.1016/S0140‑6736(13)61614‑1 23972816
    [Google Scholar]
  5. ArroyoM. LarrosaR. Gómez-MaldonadoJ. CoboM.Á. ClarosM.G. BautistaR. Expression-based, consistent biomarkers for prognosis and diagnosis in lung cancer.Clin. Transl. Oncol.202022101867187410.1007/s12094‑020‑02328‑4 32180209
    [Google Scholar]
  6. ViscontiR. MorraF. GugginoG. CelettiA. The between now and then of lung cancer chemotherapy and immunotherapy.Int. J. Mol. Sci.2017187137410.3390/ijms18071374 28653990
    [Google Scholar]
  7. BartaJ.A. PowellC.A. WisniveskyJ.P. Global Epidemiology of Lung Cancer.Ann. Glob. Health2019851810.5334/aogh.2419 30741509
    [Google Scholar]
  8. MillerK.D. NogueiraL. DevasiaT. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.21731 35736631
    [Google Scholar]
  9. DuX. ZhangJ. WangJ. LinX. DingF. Role of miRNA in lung cancer-potential biomarkers and therapies.Curr. Pharm. Des.201823395997601010.2174/1381612823666170714150118 28714414
    [Google Scholar]
  10. IqbalM.A. AroraS. PrakasamG. CalinG.A. SyedM.A. MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance.Mol. Aspects Med.20197032010.1016/j.mam.2018.07.003 30102929
    [Google Scholar]
  11. CassimS. ChepulisL. KeenanR. KiddJ. FirthM. LawrensonR. Patient and carer perceived barriers to early presentation and diagnosis of lung cancer: A systematic review.BMC Cancer20191912510.1186/s12885‑018‑5169‑9 30621616
    [Google Scholar]
  12. ChenL. HeikkinenL. WangC. YangY. SunH. WongG. Trends in the development of miRNA bioinformatics tools.Brief. Bioinform.20192051836185210.1093/bib/bby054 29982332
    [Google Scholar]
  13. ShahM.Y. FerrajoliA. SoodA.K. Lopez-BeresteinG. CalinG.A. microRNA Therapeutics in Cancer — An Emerging Concept.EBioMedicine201612344210.1016/j.ebiom.2016.09.017 27720213
    [Google Scholar]
  14. CalinG.A. DumitruC.D. ShimizuM. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia.Proc. Natl. Acad. Sci. USA20029924155241552910.1073/pnas.242606799 12434020
    [Google Scholar]
  15. MendezM.F. Early-Onset alzheimer Disease.Neurol. Clin.201735226328110.1016/j.ncl.2017.01.005 28410659
    [Google Scholar]
  16. IorioM.V. CroceC.M. MicroRNA dysregulation in cancer: Diagnostics, monitoring and therapeutics. A comprehensive review.EMBO Mol. Med.20124314315910.1002/emmm.201100209 22351564
    [Google Scholar]
  17. HuC. MeinersS. LukasC. StathopoulosG.T. ChenJ. Role of exosomal microRNAs in lung cancer biology and clinical applications.Cell Prolif.2020536e1282810.1111/cpr.12828 32391938
    [Google Scholar]
  18. TuoL. ChuX. ShaS. ZhangX. MicroRNA and Lung Cancer: A Mini Review.Zhongguo Fei Ai Za Zhi2018219727730 30201074
    [Google Scholar]
  19. XuC. ZhangL. DuanL. LuC. MicroRNA-3196 is inhibited by H2AX phosphorylation and attenuates lung cancer cell apoptosis by downregulating PUMA.Oncotarget2016747777647777610.18632/oncotarget.12794 27780918
    [Google Scholar]
  20. YuJ. ZhangL. PUMA, a potent killer with or without p53.Oncogene200827Suppl. 1S71S8310.1038/onc.2009.45
    [Google Scholar]
  21. ZhuJ. ZengY. LiW. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer.Mol. Cancer20171613410.1186/s12943‑017‑0591‑1 28158983
    [Google Scholar]
  22. MengF. WangF. WangL. WongS.C.C. ChoW.C.S. ChanL.W.C. MiR-30a-5p overexpression may overcome EGFR-inhibitor resistance through regulating PI3K/AKT signaling pathway in non-small cell lung cancer cell lines.Front. Genet.2016719710.3389/fgene.2016.00197 27895663
    [Google Scholar]
  23. KumarswamyR. MudduluruG. CeppiP. MicroRNA‐30a inhibits epithelial‐to‐mesenchymal transition by targeting Snai1 and is down-regulated in non‐small cell lung cancer.Int. J. Cancer201213092044205310.1002/ijc.26218 21633953
    [Google Scholar]
  24. LvQ. HuJ.X. LiY.J. MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals.Cancer Biol. Ther.201718314215110.1080/15384047.2017.1281497 28106481
    [Google Scholar]
  25. IurcaI. TirpeA. ZimtaA.A. Macrophages interaction and MicroRNA Interplay in the modulation of cancer development and metastasis.Front. Immunol.20201187010.3389/fimmu.2020.00870 32477352
    [Google Scholar]
  26. ShiL. XuZ. WuG. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin J.BMC Cancer201717113810.1186/s12885‑017‑3132‑9 28202053
    [Google Scholar]
  27. ShomaliN. MansooriB. MohammadiA. ShirafkanN. GhasabiM. BaradaranB. MiR-146a functions as a small silent player in gastric cancer.Biomed. Pharmacother.20179623824510.1016/j.biopha.2017.09.138 28987948
    [Google Scholar]
  28. LiM. FuW. WoL. ShuX. LiuF. LiC. miR-128 and its target genes in tumorigenesis and metastasis.Exp. Cell Res.2013319203059306410.1016/j.yexcr.2013.07.031 23958464
    [Google Scholar]
  29. ZhangR. LiuC. NiuY. MicroRNA-128-3p regulates mitomycin C-induced DNA damage response in lung cancer cells through repressing SPTAN1.Oncotarget2017835580985810710.18632/oncotarget.12300 28938540
    [Google Scholar]
  30. LiangR.F. LiM. YangY. WangX. MaoQ. LiuY.H. Circulating miR- 128 as a potential diagnostic biomarker for glioma.Clin. Neurol. Neurosurg.2017160889110.1016/j.clineuro.2017.06.020 28704779
    [Google Scholar]
  31. PapagiannakopoulosT. Friedmann-MorvinskiD. NeveuP. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases.Oncogene201231151884189510.1038/onc.2011.380 21874051
    [Google Scholar]
  32. GuidiM. Muiños-GimenoM. KagerbauerB. MartíE. EstivillX. Espinosa-Parrilla Y. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells.BMC Mol. Biol.20101119510.1186/1471‑2199‑11‑95 21143953
    [Google Scholar]
  33. ZhuY. YuF. JiaoY. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5.Clin. Cancer Res.201117227105711510.1158/1078‑0432.CCR‑11‑0071 21953503
    [Google Scholar]
  34. QianP. BanerjeeA. WuZ.S. Loss of SNAIL regulated miR-128- 2 on chromosome 3p22.3 targets multiple stem cell factors to promote transformation of mammary epithelial cells.Cancer Res.201272226036605010.1158/0008‑5472.CAN‑12‑1507 23019226
    [Google Scholar]
  35. EvangelistiC. FlorianM.C. MassimiI. MiR‐128 up‐regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness.FASEB J.200923124276428710.1096/fj.09‑134965 19713529
    [Google Scholar]
  36. LeeR.C. FeinbaumR.L. AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14.Cell199375584385410.1016/0092‑8674(93)90529‑Y 8252621
    [Google Scholar]
  37. BhaskaranM MohanM. MicroRNAs.Vet Pathol20145147597410.1177/0300985813502820 24045890
    [Google Scholar]
  38. ReinhartB.J. SlackF.J. BassonM. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.Nature2000403677290190610.1038/35002607 10706289
    [Google Scholar]
  39. SlackF.J. BassonM. LiuZ. AmbrosV. HorvitzH.R. RuvkunG. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor.Mol. Cell20005465966910.1016/S1097‑2765(00)80245‑2 10882102
    [Google Scholar]
  40. PasquinelliA.E. ReinhartB.J. SlackF. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.Nature20004086808868910.1038/35040556 11081512
    [Google Scholar]
  41. Tülay AydınP. GözM. KankılıçN. AydınM.S. Koyuncuİ. Micro‐ RNA gene expressions during cardiopulmonary bypass.J. Card. Surg.202136392192710.1111/jocs.15329 33484193
    [Google Scholar]
  42. KoN.Y. ChenL.R. ChenK.H. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis.Int. J. Mol. Sci.20202114488610.3390/ijms21144886 32664424
    [Google Scholar]
  43. FransquetPD RyanJ Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer’s disease.Clin Biochem20185851410.1016/j.clinbiochem.2018.05.020 29885309
    [Google Scholar]
  44. RodriguezA. Griffiths-JonesS. AshurstJ.L. BradleyA. Identification of mammalian microRNA host genes and transcription units.Genome Res.20041410a1902191010.1101/gr.2722704 15364901
    [Google Scholar]
  45. TafrihiM. HasheminasabE. MiRNAs: Biology, biogenesis, their web- based tools, and databases.MicroRNA20188142710.2174/2211536607666180827111633 30147022
    [Google Scholar]
  46. QiuH. LiangD. LiuL. XiangQ. YiZ. JiY. A novel circulating MiRNA-based signature for the diagnosis and prognosis prediction of early-stage cervical cancer.Technol. Cancer Res. Treat.20201910.1177/1533033820970667 33327867
    [Google Scholar]
  47. LinZ. ChenY. LinY. Potential miRNA biomarkers for the diagnosis and prognosis of esophageal cancer detected by a novel absolute quantitative RT-qPCR method.Sci. Rep.20201012006510.1038/s41598‑020‑77119‑6 33208781
    [Google Scholar]
  48. KellerA. FehlmannT. BackesC. Competitive learning suggests circulating miRNA profiles for cancers decades prior to diagnosis.RNA Biol.202017101416142610.1080/15476286.2020.1771945 32456538
    [Google Scholar]
  49. KarabulutS. ŞenS. SoydinçH.O. Investigation of the potential of miRNA candidates as non-invasive biomarkers for the diagnosis and follow-up of colorectal cancer.Pathol. Res. Pract.202425415509410.1016/j.prp.2024.155094 38219497
    [Google Scholar]
  50. ShinV.Y. ChuK.M. MiRNA as potential biomarkers and therapeutic targets for gastric cancer.World J. Gastroenterol.20142030104321043910.3748/wjg.v20.i30.10432 25132759
    [Google Scholar]
  51. XiaL. ZhangD. DuR. miR‐15b and miR‐16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells.Int. J. Cancer2008123237237910.1002/ijc.23501 18449891
    [Google Scholar]
  52. LiuC. WangS. ZhuS. MAP3K1-targeting therapeutic artificial miRNA suppresses the growth and invasion of breast cancer in vivo and in vitro.Springerplus2016511110.1186/s40064‑015‑1597‑z 26759750
    [Google Scholar]
  53. PanJ. ZhouC. ZhaoX. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer.Sci. Rep.2018811669910.1038/s41598‑018‑35139‑3 30420640
    [Google Scholar]
  54. FuJ LiT JiangX XiaB HuL. MicroRNA-199-3p targets Sp1 transcription factor to regulate proliferation and epithelial to mesenchymal transition of human lung cancer cells.3 Biotech202111735210.1007/s13205‑021‑02881‑x
    [Google Scholar]
  55. HanafiA.R. JayusmanA.M. AlfasunuS. Serum MiRNA as predictive and prognosis biomarker in advanced stage non-small cell lung cancer in Indonesia.Zhongguo Fei Ai Za Zhi2020235321332 32283582
    [Google Scholar]
  56. ZuoM. YaoL. WenL. The expression of miRNA-216b is negatively correlated with 18F-FDG uptake in non-small cell lung cancer.World J. Surg. Oncol.202119126210.1186/s12957‑021‑02376‑2 34470640
    [Google Scholar]
  57. GaoX. ShenK. WangC. MiR-320a downregulation is associated with imatinib resistance in gastrointestinal stromal tumors.Acta Biochim. Biophys. Sin. (Shanghai)2014461727510.1093/abbs/gmt118 24217767
    [Google Scholar]
  58. HeM. WangJ. YinZ. MiR-320a induces diabetic nephropathy] via inhibiting MafB.Aging (Albany NY)201911103055307910.18632/aging.101962 31102503
    [Google Scholar]
  59. LawY.Y. LinY.M. LiuS.C. Visfatin increases ICAM-1 expression and monocyte adhesion in human osteoarthritis synovial fibroblasts by reducing miR-320a expression.Aging20201218186351864810.18632/aging.103889 32991325
    [Google Scholar]
  60. WangB. YangZ. WangH. MicroRNA-320a inhibits proliferation and invasion of breast cancer cells by targeting RAB11A.Am. J. Cancer Res.2015592719272910.1158/1538‑7445.AM2015‑2719 26609479
    [Google Scholar]
  61. LiuJ. SongZ. FengC. The long non-coding RNA SUMO1P3 facilitates breast cancer progression by negatively regulating miR- 320a.Am. J. Transl. Res.201791255945602 29312511
    [Google Scholar]
  62. FortunatoO. BorziC. MilioneM. Circulating mir‐320a promotes immunosuppressive macrophages M2 phenotype associated with lung cancer risk.Int. J. Cancer2019144112746276110.1002/ijc.31988 30426475
    [Google Scholar]
  63. VykoukalJ. FahrmannJ.F. PatelN. Contributions of circulating microRNAs for early detection of lung cancer.Cancers20221417422110.3390/cancers14174221 36077759
    [Google Scholar]
  64. QinH. LiuJ. DuZ.H. HuR. YuY.K. WangQ.A. Circular RNA hsa_circ_0012673 facilitates lung cancer cell proliferation and invasion via miR-320a/LIMK18521 axis.Eur. Rev. Med. Pharmacol. Sci.202024418411852 32141553
    [Google Scholar]
  65. KhandelwalA. SharmaU. BarwalT.S. Circulating miR-320a acts as a tumor suppressor and prognostic factor in non-small cell lung cancer.Front. Oncol.20211164547510.3389/fonc.2021.645475 33833996
    [Google Scholar]
  66. HuangH. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent advances.Sensors20181810324910.3390/s18103249 30262739
    [Google Scholar]
  67. ZhaoW. SunQ. YuZ. MiR-320a-3p/ELF3 axis regulates cell metastasis and invasion in non-small cell lung cancer via PI3K/Akt pathway.Gene2018670313710.1016/j.gene.2018.05.100 29803922
    [Google Scholar]
  68. LvQ HuJX LiYJ XieN SongDD ZhaoW YanYF LiBS WangPY XieSY MiR-320a effectively suppresses lung adenocarcinoma cell proliferation and metastasis by regulating STAT3 signals.Cancer Biol Ther.2017Mar 4183142151Epub 2017 Jan 20.10.1080/15384047.2017.1281497 28106481 PMC5389432
    [Google Scholar]
  69. WangH. DongH. QiaoL. WuY. WuB. JinX. ZEB1 induces non- small cell lung cancer development by targeting microRNA-320a to increase the expression of RAD51AP1.Exp. Cell Res.2021405211268710.1016/j.yexcr.2021.112687 34097859
    [Google Scholar]
  70. WangJ. ShiC. WangJ. CaoL. ZhongL. WangD. MicroRNA-320a is downregulated in non-small cell lung cancer and suppresses tumor cell growth and invasion by directly targeting insulin-like growth factor 1 receptor.Oncol. Lett.20171353247325210.3892/ol.2017.5863 28521431
    [Google Scholar]
  71. XieH. WangJ. MicroRNA-320a-containing exosomes from human umbilical cord mesenchymal stem cells curtail proliferation and metastasis in lung cancer by binding to SOX4.J. Recept. Signal Transduct. Res.202242326827810.1080/10799893.2021.1918166 34096448
    [Google Scholar]
  72. XingA. PanL. GaoJ. p100 functions as a metastasis activator and is targeted by tumor suppressing microRNA‐320a in lung cancer.Thorac. Cancer20189115215810.1111/1759‑7714.12564 29159900
    [Google Scholar]
  73. ZhangG. JiangG. WangC. Decreased expression of microRNA- 320a promotes proliferation and invasion of non-small cell lung cancer cells by increasing VDAC1 expression.Oncotarget2016731494704948010.18632/oncotarget.9943 27304056
    [Google Scholar]
  74. SunJ.Y. ZhaoZ.W. LiW.M. Knockdown of MALAT1 expression inhibits HUVEC proliferation by upregulation of miR-320a and down- regulation of FOXM1 expression.Oncotarget20178376149961509
    [Google Scholar]
  75. LiangS.K. HsuC.C. SongH.L. FOXM1 is required for small cell lung cancer tumorigenesis and associated with poor clinical prognosis.Oncogene202140304847485810.1038/s41388‑021‑01895‑2 34155349
    [Google Scholar]
  76. PengJ. WangR. SunW. Delivery of miR-320a-3p by gold nano-particles combined with photothermal therapy for directly targeting Sp1 in lung cancer.Biomater. Sci.20219196528654110.1039/D1BM01124C 34582541
    [Google Scholar]
  77. XuL.M. YuH. YuanY.J. Overcoming of radioresistance in non-small cell lung cancer by microRNA-320a through HIF1α-suppression mediated methylation of PTEN.Front. Cell Dev. Biol.2020855373310.3389/fcell.2020.553733
    [Google Scholar]
  78. KumarS. SharawatS.K. AliA. Identification of differentially expressed circulating serum microRNA for the diagnosis and prognosis of Indian non–small cell lung cancer patients.Curr. Probl. Cancer202044410054010.1016/j.currproblcancer.2020.100540 32007320
    [Google Scholar]
  79. WangN. GuoW. SongX. Tumor-associated exosomal miRNA biomarkers to differentiate metastatic vs. nonmetastatic non-small cell lung cancer.Clin. Chem. Lab. Med.20205891535154510.1515/cclm‑2019‑1329 32271158
    [Google Scholar]
  80. LuM. HuC. WuF. MiR-320a is associated with cisplatin resistance in lung adenocarcinoma and its clinical value in non-small cell lung cancer: A comprehensive analysis based on microarray data.Lung Cancer202014719319710.1016/j.lungcan.2020.06.020 32731058
    [Google Scholar]
  81. AzizN.B. MahmudunnabiR.G. UmerM. MicroRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors.Analyst (Lond.)202014562038205710.1039/C9AN02263E 32016203
    [Google Scholar]
  82. HuntE.A. GouldingA.M. DeoS.K. Direct detection and quantification of microRNAs.Anal. Biochem.2009387111210.1016/j.ab.2009.01.011 19454247
    [Google Scholar]
  83. OuyangY. DuW. ZhangB. Application of ROC curve in non-communicable diseases screening.Chin. J. Prev. Med2015494369372 26081550
    [Google Scholar]
  84. LanX.Q. NiuL.Y. WuZ.G. ZhangC.X. ChenX.L. [Application of ROC curve for evaluation of the effect of prenatal screening during second trimester of pregnancy].Zhonghua Yi Xue Yi Chuan Xue Za Zhi2013305616618 24078584
    [Google Scholar]
  85. WangZ.F. LiG.J. [Value evaluation of follicle stimulating hormone and luteinizing hormone in the diagnosis of precocious puberty in girls by ROC curve analysis].Zhongguo Dang Dai Er Ke Za Zhi2012146441444 22738452
    [Google Scholar]
  86. HuangX. ChenS. ChenH. ROC curve analysis of the sensitivity and specificity of biochemical detection of intrahepatic cholestasis during pregnancy.Z. Geburtshilfe Neonatol.2021225432733210.1055/a‑1299‑2298 33246351
    [Google Scholar]
  87. AlbeckM.J. BørgesenS.E. ROC-curve analysis. A statistical method for the evaluation of diagnostic tests.Ugeskr. Laeger19901522316501653 2194326
    [Google Scholar]
  88. PradhanA.K. EmdadL. DasS.K. SarkarD. FisherP.B. The Enigma of miRNA Regulation in Cancer.Adv. Cancer Res.2017135255210.1016/bs.acr.2017.06.001 28882224
    [Google Scholar]
  89. RolleK. miRNA Multiplayers in glioma. From bench to bedside.Acta Biochim. Pol.201562335336510.18388/abp.2015_1072 26307768
    [Google Scholar]
  90. SousaDP CondeJ Gold Nanoconjugates for miRNA modulation in cancer therapy: From miRNA Silencing to miRNA Mimics.ACS Materials Au2022266264010.1021/acsmaterialsau.2c00042 36397876
    [Google Scholar]
  91. AlkilanyA.M. MurphyC.J. Toxicity and cellular uptake of gold nano-particles: What we have learned so far?J. Nanopart. Res.20101272313233310.1007/s11051‑010‑9911‑8 21170131
    [Google Scholar]
  92. EneaM. PereiraE. CostaJ. Cellular uptake and toxicity of gold nanoparticles on two distinct hepatic cell models.Toxicol. In vitro20217010504610.1016/j.tiv.2020.105046 33147519
    [Google Scholar]
  93. PangH.H. HuangC.Y. ChenP.Y. Bioengineered bacteriophage like nanoparticles as RNAi therapeutics to enhance radiotherapy against glioblastomas.ACS Nano20231711104071042210.1021/acsnano.3c01102 37120837
    [Google Scholar]
  94. MoY. ZhangY. ZhangY. YuanJ. MoL. ZhangQ. Nickel nanoparticle-induced cell transformation: Involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway.J. Nanobiotechnology202119137010.1186/s12951‑021‑01117‑7 34789290
    [Google Scholar]
  95. CapekI. Polymer decorated gold nanoparticles in nanomedicine conjugates.Adv. Colloid Interface Sci.201724938639910.1016/j.cis.2017.01.007 28259207
    [Google Scholar]
  96. SchubertJ. ChananaM. Coating Matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biological media, living cells and organisms.Curr. Med. Chem.201825354553458610.2174/0929867325666180601101859 29852857
    [Google Scholar]
  97. FuZ. WangL. LiS. ChenF. Au-YeungK.K.W. ShiC. MicroRNA as an important target for anticancer drug development.Front. Pharmacol.20211273632310.3389/fphar.2021.736323 34512363
    [Google Scholar]
  98. YuA.M. TianY. TuM.J. HoP.Y. JilekJ.L. MicroRNA Pharmacoepigenetics: Posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy.Drug Metab. Dispos.201644330831910.1124/dmd.115.067470 26566807
    [Google Scholar]
  99. PavlíkováL. ŠerešM. BreierA. SulováZ. The roles of micrornas in cancer multidrug resistance.Cancers (Basel)2022144109010.3390/cancers14041090 35205839
    [Google Scholar]
  100. PatelG.K. KhanM.A. BhardwajA. Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK.Br. J. Cancer2017116560961910.1038/bjc.2017.18 28152544
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366296148240530072346
Loading
/content/journals/mirna/10.2174/0122115366296148240530072346
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test