Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Background

Hydrolethalus Syndrome 1 (HYDS1) is a rare disorder that occurs commonly in Finnish infants but originates from the mother. This autosomal recessive syndrome is associated with the which is usually expressed in the centriole. The is an inheritable arthritis disease phenotype that includes rheumatoid arthritis. Several studies have investigated males with mutation carriers also related to arthritis diseases, including those under rheumatoid arthritis conditions, which revealed the possibility of conferring the gene mutation to the next generation of offspring. Nonetheless, there are some complications of mutation with target miRNAs that can be affected by exercise.

Objective

The objective of this study was to evaluate the different exercises that can be utilized to suppress the mutation targeted by Novel-rno-miRNAs-1135 as a biomarker and assess the effectiveness of exercise in mitigating the mutation.

Methods

Four exercise interventional groups were divided into exercise and non-exercise groups. One hundred microliter pristane-induced arthritis (PIA) was injected at the dorsal region of the tails of rodents and introduced to the two PIA interventional groups. On day forty-five, all animals were euthanized, and total RNA was extracted from the blood samples of rodents, while polymerase chain reaction (PCR) was amplified by using 5-7 primers. Computerization was used for miRNA regulation and analysis of target gene candidates.

Results

The novel-rno-miRNA-1135 was downregulated to in exercise groups. The exercise was found to have no significant impact in terms of change in novel-rno-miRNA-1135 regulation of expression.

Conclusion

Exercise has no impact on novel-rno-miRNA-1135 targeted for in autosomal recessive disease.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366294831240606115216
2024-11-01
2024-11-22
Loading full text...

Full text loading...

/deliver/fulltext/mirna/13/3/MIRNA-13-3-05.html?itemId=/content/journals/mirna/10.2174/0122115366294831240606115216&mimeType=html&fmt=ahah

References

  1. PaetauA. HonkalaH. SalonenR. IgnatiusJ. KestiläM. HervaR. Hydrolethalus syndrome.J. Neuropathol. Exp. Neurol.200867875076210.1097/NEN.0b013e318180ec2e 18648327
    [Google Scholar]
  2. ShotelersukV. PunyavoravudV. PhudhichareonratS. KukulprasongA. An Asian girl with a milder form of the Hydrolethalus syndrome.Clin. Dysmorphol.2001101515510.1097/00019605‑200101000‑00011 11152149
    [Google Scholar]
  3. de RavelT.J.L. van der GriendtM.C. EvanP. WrightC.A. Hydrolethalus syndrome in a non-Finnish family: confirmation of the entity and early prenatal diagnosis.Prenat. Diagn.199919327928110.1002/(SICI)1097‑0223(199903)19:3<279::AID‑PD518>3.0.CO;2‑L 10210131
    [Google Scholar]
  4. BarthM.B. PoliJ.H.Z. VogtG.N. FeltesI.C. SampaioV.O. SaD.C. The first Brazilian case of Hydrolethalus syndrome.13th World Congress in Fetal MedicineNice, France201416
    [Google Scholar]
  5. GeorgeE. Hydrolethalus syndrome 1. In: HLS1: Phenotype-Gene Relationships. Johns Hopkins University 2007; pp. 1-8Available from: https://omim.org/entry/236680
  6. LongH. HuangK. Transport of ciliary membrane proteins.Front. Cell Dev. Biol.2020738110.3389/fcell.2019.00381 31998723
    [Google Scholar]
  7. VisapääI. SalonenR. VariloT. PaavolaP. PeltonenL. Assignment of the locus for hydrolethalus syndrome to a highly restricted region on 11q23-25.Am. J. Hum. Genet.19996541086109510.1086/302603 10486328
    [Google Scholar]
  8. SlatkinM. Linkage disequilibrium: Understanding the evolutionary past and mapping the medical future.Nat. Rev. Genet.20089647748510.1038/nrg2361 18427557
    [Google Scholar]
  9. ConteI. HadfieldK.D. BarbatoS. CarrellaS. PizzoM. BhatR.S. MiR-204 is responsible for inherited retinal dystrophy associated with ocular coloboma.Proc. Natl. Acad. Sci. U S A201511225E3236E324510.1073/pnas.1401464112
    [Google Scholar]
  10. LamontL.B. CrittendenS.L. BernsteinD. WickensM. KimbleJ. FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline.Dev. Cell20047569770710.1016/j.devcel.2004.09.013 15525531
    [Google Scholar]
  11. National Center for Biotechnology Information . FBF1 Fas binding factor 1. Homo sapiens (human) National Library of Medicine.Available from: https://www.ncbi.nlm.nih.gov/gene/85302
  12. The International Mouse Phenotyping Consortium Gene: Fbf1: The International Mouse Phenotyping Consortium. Available from: https://www.mousephenotype.org/data/genes/MGI:1922033
  13. YounY.H. HanY.G. Primary cilia in brain development and diseases.Am. J. Pathol.20181881112210.1016/j.ajpath.2017.08.031 29030052
    [Google Scholar]
  14. WeiQ. LingK. HuJ. The essential roles of transition fibers in the context of cilia.Curr. Opin. Cell Biol.2015359810510.1016/j.ceb.2015.04.015 25988548
    [Google Scholar]
  15. WeiQ. XuQ. ZhangY. Transition fibre protein FBF1 is required for the ciliary entry of assembled intraflagellar transport complexes.Nat. Commun.201341275010.1038/ncomms3750 24231678
    [Google Scholar]
  16. BachorikJ.L. KimbleJ. Redundant control of the caenorhabditis elegans sperm/oocyte switch by PUF-8 and FBF-1, two distinct puf rna-binding proteins.PNAS2005102311089310897
    [Google Scholar]
  17. ManiatesK.A. OlsonB.S. AbbottA.L. Sperm fate is promoted by the mir-44 microRNA family in the Caenorhabditis elegans hermaphrodite germline.Genetics20212171iyaa00610.1093/genetics/iyaa006 33683352
    [Google Scholar]
  18. AroraS. RanaR. ChhabraA. JaiswalA. RaniV. miRNA–transcription factor interactions: A combinatorial regulation of gene expression.Mol. Genet. Genomics20132883-4778710.1007/s00438‑013‑0734‑z 23334784
    [Google Scholar]
  19. AughtonD.J. CassidyS.B. OpitzJ.M. ReynoldsJ.F. Hydrolethalus syndrome: Report of an apparent mild case, literature review, and differential diagnosis.Am. J. Med. Genet.198727493594210.1002/ajmg.1320270421 3321994
    [Google Scholar]
  20. Martinez-SanchezA. LazzaranoS. SharmaE. LockstoneH. MurphyC.L. High-throughput identification of MiR-145 targets in human articular chondrocytes.Life20201055810.3390/life10050058 32403239
    [Google Scholar]
  21. ] International mouse phenotyping consortium. gene: Fbf1 MGI:1922033 Gene summary. Available from: https://www.mousephenotype.org/data/genes/MGI:1922033
  22. McGeeS.L. HargreavesM. Exercise adaptations: Molecular mechanisms and potential targets for therapeutic benefit.Nat. Rev. Endocrinol.202016949550510.1038/s41574‑020‑0377‑1 32632275
    [Google Scholar]
  23. PerandiniL.A. de Sá-PintoA.L. RoschelH. Exercise as a therapeutic tool to counteract inflammation and clinical symptoms in autoimmune rheumatic diseases.Autoimmun. Rev.201212221822410.1016/j.autrev.2012.06.007 22776785
    [Google Scholar]
  24. SilvaG.J.J. ByeA. el AzzouziH. WisløffU. MicroRNAs as important regulators of exercise adaptation.Prog. Cardiovasc. Dis.201760113015110.1016/j.pcad.2017.06.003 28666746
    [Google Scholar]
  25. AntunesM.D. da Rocha LouresF.C.N. de SouzaI.M.B. A web-based educational therapy intervention associated with physical exercise to promote health in fibromyalgia in Brazil: The Amigos De Fibro (Fibro Friends) study protocol.Trials202324165510.1186/s13063‑023‑07588‑3 37814321
    [Google Scholar]
  26. PiperS.K. ZochollD. ToelchU. Statistical review of animal trials: A guideline.Biom. J.2023652220006110.1002/bimj.202200061 36071025
    [Google Scholar]
  27. OlofssonP. HolmdahlR. Pristane induced arthritis in the rat.Methods Mol. Med.200713625526810.1007/978‑1‑59745‑402‑5_19 17983154
    [Google Scholar]
  28. TuncelJ. HaagS. HoffmannM.H. YauA.C.Y. HultqvistM. OlofssonP. Animal models of rheumatoid arthritis (I): Pristane-induced arthritis in the rat.PloS one2016115e0155936
    [Google Scholar]
  29. BolgerA.M. LohseM. UsadelB. Trimmomatic: A flexible trimmer for Illumina sequence data.Bioinformatics201430152114212010.1093/bioinformatics/btu170 24695404
    [Google Scholar]
  30. KozomaraA. BirgaoanuM. Griffiths-JonesS. miRBase: from microRNA sequences to function.Nucleic Acids Res.201947D1D155D16210.1093/nar/gky1141 30423142
    [Google Scholar]
  31. FriedländerM.R. MackowiakS.D. LiN. ChenW. RajewskyN. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades.Nucleic Acids Res.2012401375210.1093/nar/gkr688 21911355
    [Google Scholar]
  32. LoveM.I.M.I. HuberW.W. AndersS.S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.GenBiol2014151215
    [Google Scholar]
  33. ZhangY. HaoJ. TarragoM.G. WarnerG.M. GiorgadzeN. WeiQ. FBF1 deficiency promotes beiging and healthy expansion of white adipose tissue.Cell rep.2021365109481
    [Google Scholar]
  34. HouY. WuZ. ZhangY. ChenH. HuJ. GuoY. Functional analysis of hydrolethalus syndrome protein HYLS1 in ciliogenesis and spermatogenesis in drosophila.Front. Cell Dev. Biol.2020830110.3389/fcell.2020.00301
    [Google Scholar]
  35. SuryavanshiS. JadhavS. McConnellB. Polymorphisms/mutations in A-kinase anchoring proteins (AKAPs): Role in the cardiovascular system.J. Cardiovasc. Dev. Dis.201851710.3390/jcdd5010007 29370121
    [Google Scholar]
  36. MasiL.N. SerdanT.D.A. Levada-PiresA.C. Regulation of gene expression by exercise-related micrornas.Cell. Physiol. Biochem.20163962381239710.1159/000452507 27832652
    [Google Scholar]
  37. TonevitskyA.G. MaltsevaD.V. AbbasiA. Dynamically regulated miRNA-mRNA networks revealed by exercise.BMC Physiol.2013131910.1186/1472‑6793‑13‑9 24219008
    [Google Scholar]
  38. TaurinoC. MillerW.H. McBrideM.W. McClureJ.D. KhaninR. MorenoM.U. Gene expression profiling in whole blood of patients with coronary artery disease.Clin. Sci. 2010119833534310.1042/CS20100043
    [Google Scholar]
  39. WangY. ChenZ.P. HuH. Sperm microRNAs confer depression susceptibility to offspring.Sci. Adv.202177eabd760510.1126/sciadv.abd7605 33568480
    [Google Scholar]
  40. GhaiM. KaderF. A review on epigenetic inheritance of experiences in humans.Biochem. Genet.202160411071140 34792705
    [Google Scholar]
  41. SafdarA. AbadiA. AkhtarM. HettingaB.P. TarnopolskyM.A. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice.PloS one200945e5610
    [Google Scholar]
  42. RajaiahR. MoudgilK.D. CHAPTER 8N: Animal Models. Rheumatoid Arthritis.PhiladelphiaMosby200921822410.1016/B978‑032305475‑1.50031‑8
    [Google Scholar]
  43. WooleyP.H. 19: Immunogenetics of Animal Models of Rheumatoid Arthritis.Mechanisms and Models in Rheumatoid Arthritis.LondonAcademic Press199537338710.1016/B978‑012340440‑4/50051‑9
    [Google Scholar]
  44. NossalG.J.V. Negative selection of lymphocytes.Cell199476222923910.1016/0092‑8674(94)90331‑X 8293461
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366294831240606115216
Loading
/content/journals/mirna/10.2174/0122115366294831240606115216
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): autosomal; exercise; hydrolethalus syndrome; miRNA; Novel; rheumatoid arthritis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test