Skip to content
2000
Volume 17, Issue 5
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background: Schizophrenia is a disorder with complex etiology with hyperdopaminergia as the leading underlying cause. Atypical antipsychotics are the agents which do not give rise to significant extrapyramidal side effects and are more effective against negative symptoms of schizophrenia. Introduction: A new series of chloro-substituted substituted aryloxypiperazine derivatives and their indole based derivatives was designed and evaluated for atypical antipsychotic activity based on established models for combined dopaminergic and serotonergic antagonism. Methods: The present series of compounds were designed based on 3D similarity studies, synthesized and evaluated for atypical antipsychotic activity in animal models for combined dopaminergic and serotonergic antagonism. The blood-brain barrier penetration potential was assessed from theoretical log BB values computed through an online software program. Results: Theoretical ADME profiling of the designed compounds based on selected physicochemical parameters suggested excellent compliance with Lipinski’s rules. The log BB values obtained for the compounds suggested a good potential for brain permeation. Indole substitution contributed towards an improved efficacy over aryloxy analogs. Lead compounds showed a potential for combined dopaminergic and serotonergic antagonism. Conclusion: The 5-methoxy indole based compounds 16 and 17 were identified as the lead compounds displaying a potential atypical antipsychotic profile.

Loading

Article metrics loading...

/content/journals/mc/10.2174/1573406415666191022150435
2021-06-01
2025-01-07
Loading full text...

Full text loading...

/content/journals/mc/10.2174/1573406415666191022150435
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test