Skip to content
2000
Volume 15, Issue 7
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Background: Tyrosinase is involved in the melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders. Controlling the melanogenesis could be an important strategy for treating abnormal pigmentation. Methods: In the present study, a series of amide derivatives (3a-e and 5a-e) were synthesized aiming to inhibit tyrosinase activity and melanin production. All derivatives were screened for tyrosinase inhibition in a cell-free system. The possible interactions of amide derivatives with tyrosinase enzyme and effect of these interactions on tyrosinase structure were checked by molecular docking in silico and by Circular Dichroism (CD) studies, respectively. The most potent amide derivative (5c) based on cell-free experiments, was further tested for cellular ROS inhibition and for tyrosinase activity using mouse skin melanoma (B16F10) cells. Results: The tyrosinase inhibitory concentration (IC50) for tested compounds was observed between the range of 68 to 0.0029 μg/ml with a lowest IC50 value of compound 5c which outperforms the reference arbutin and kojic acid. The cellular tyrosinase activity and melanin quantification assay demonstrate that 15μg/ml of 5c attenuates 36% tyrosinase, 24% melanin content of B16F10 cells without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that 5c effectively reduces melanogenesis without perceptible toxicity. Furthermore, the molecular docking demonstrates that compound 5c interacts with copper ions and multiple amino acids in the active site of tyrosinase with best glide score (-5.387 kcal/mol), essential for mushroom tyrosinase inhibition and the ability to diminish the melanin synthesis in-vitro and in-vivo. Conclusion: Thus, we propose compound 5c as a potential candidate to control tyrosinase rooted hyperpigmentation in the future.

Loading

Article metrics loading...

/content/journals/mc/10.2174/1573406415666190319101329
2019-11-01
2025-05-29
Loading full text...

Full text loading...

/content/journals/mc/10.2174/1573406415666190319101329
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test