Skip to content
2000
Volume 9, Issue 1
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase with diverse functions in neuronal development and adult brain physiology. Elevated levels of Dyrk1A are associated with the pathology of neurodegenerative diseases and have been implicated in some neurobiological alterations of Down syndrome, such as mental retardation. Meridianins are marine derived indole alkaloids exhibiting anti-proliferative activity as well as are known to inhibit panel of kinases. In the present article, a descriptor based QSAR study was carried out for a series of meridianin analogs inhibiting Dyrk1A to find out structural features which are crucial for biological activity. Developed QSAR model showed good correlation coefficient (r > 0.9), higher F value (F > 20) and excellent predictive power (r2 cv and r2 pred > 0.6). Activity of naturally occurring meridianins was also predicted using developed model. The study indicated that kier Chi4 path/cluster, total lipole, VAMP polarization ZZ component, dipole moment Z component and log P plays important role in Dyrk1A inhibition. Further analysis of pharmacophore model using PHASE module of Schrodinger revealed that two hydrogen bond acceptors (A), two hydrogen bond donors (D) and two hydrophobic aromatic rings (R) are crucial molecular features that predict binding affinity for meridianins to the Dyrk1A enzyme. These observations provide important insights to the key structural requirements of meridianins for potent Dyrk1A inhibition. Excellent statistical results of developed models strongly suggest that these models are reasonable for prediction of the activity of new inhibitors and in future drug design.

Loading

Article metrics loading...

/content/journals/mc/10.2174/157340613804488459
2013-02-01
2025-05-25
Loading full text...

Full text loading...

/content/journals/mc/10.2174/157340613804488459
Loading

  • Article Type:
    Research Article
Keyword(s): Alzheimer's disease; Down syndrome; Dyrk1A; meridianins; pharmacophore model; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test