Skip to content
2000
image of Unveiling Indazole: Novel Synthetic Pathways and Biological Potentials

Abstract

Indazole, a heterocyclic molecule, has emerged as a useful scaffold in synthetic and medicinal chemistry due to its broad biological activity and ease of synthesis. This article thoroughly analyzes unique synthetic methods used to diversify indazole derivatives, such as metal-catalyzed reactions, ecologically friendly approaches, and novel multicomponent reactions. These advances have increased the efficiency and selectivity of indazole synthesis and its structural variety, paving the path for new biological applications. Furthermore, indazole-based compounds have demonstrated promising biological activities, particularly as anticancer, antibacterial, and anti-inflammatory medicines. This review summarizes the present state of indazole research, focusing on synthetic techniques and biological features that make indazole an attractive target for future drug discovery.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064360528241209074117
2024-12-24
2025-01-24
Loading full text...

Full text loading...

References

  1. Agrawal N. Bansal D. Gautam V. Synthetic and pharmacological expedition of Pyrazolo[1,5-a]pyridine: A comprehensive review. Lett. Drug Des. Discov. 2024 21 1 71 87 10.2174/1570180820666230803101948
    [Google Scholar]
  2. Agrawal N. Bhardwaj A. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1, 4‐di‐ N‐oxide scaffold. Chem. Biol. Drug Des. 2022 100 3 346 363 10.1111/cbdd.14094 35610776
    [Google Scholar]
  3. Pandit N. Shah K. Agrawal N. Upmanyu N. Shrivastava S.K. Mishra P. Synthesis, characterization and biological evaluation of some novel fluoroquinolones. Med. Chem. Res. 2016 25 5 843 851 10.1007/s00044‑016‑1526‑x
    [Google Scholar]
  4. Agrawal N. Goswami R. Pathak S. Synthetic methods for various chromeno-fused heterocycles and their potential as antimicrobial agents. Med. Chem. 2024 20 2 115 129 10.2174/0115734064274748231005074100 37855281
    [Google Scholar]
  5. Agrawal N. Mishra R. Pathak S. Goyal A. Shah K. Hydrazides and hydrazones: robust scaffolds in neurological and neurodegenerative disorders. Lett. Org. Chem. 2023 20 2 123 136 10.2174/1570178619666220831122614
    [Google Scholar]
  6. Shang C. Hou Y. Meng T. Shi M. Cui G. The anticancer activity of indazole compounds: a mini review. Curr. Top. Med. Chem. 2021 21 5 363 376 10.2174/1568026620999201124154231 33238856
    [Google Scholar]
  7. Mal S. Malik U. Mahapatra M. Mishra A. Pal D. Paidesetty S.K. A review on synthetic strategy, molecular pharmacology of indazole derivatives, and their future perspective. Drug Dev. Res. 2022 83 7 1469 1504 10.1002/ddr.21979 35971890
    [Google Scholar]
  8. Sureshbabu P. Bhajammanavar V. Choutipalli V.S.K. Subramanian V. Baidya M. Unorthodox cascade reaction of arynes and N -nitrosamides leading to indazole scaffolds. Chem. Commun. (Camb.) 2022 58 8 1187 1190 10.1039/D1CC05655G 34981799
    [Google Scholar]
  9. Sureshbabu P. Chaudhary P. Synthesis of indazole scaffolds from arynes and suitable coupling partners - A brief review. Mini Rev. Org. Chem. 2024 21 21 10.2174/0118756298321262240719103850
    [Google Scholar]
  10. Pérez-Villanueva J. Yépez-Mulia L. González-Sánchez I. Palacios-Espinosa J. Soria-Arteche O. Sainz-Espuñes T. Cerbón M. Rodríguez-Villar K. Rodríguez-Vicente A. Cortés-Gines M. Custodio-Galván Z. Estrada-Castro D. Synthesis and biological evaluation of 2H-indazole derivatives: towards antimicrobial and anti-inflammatory dual agents. Molecules 2017 22 11 1864 10.3390/molecules22111864 29088121
    [Google Scholar]
  11. Wang Y. Yan M. Ma R. Ma S. Synthesis and antibacterial activity of novel 4-bromo-1H-indazole derivatives as FtsZ inhibitors. Arch. Pharm. (Weinheim) 2015 348 4 266 274 10.1002/ardp.201400412 25773717
    [Google Scholar]
  12. Rodríguez-Villar K. Yépez-Mulia L. Cortés-Gines M. Aguilera-Perdomo J.D. Quintana-Salazar E.A. Olascoaga Del Angel K.S. Cortés-Benítez F. Palacios-Espinosa J.F. Soria-Arteche O. Pérez-Villanueva J. Synthesis, antiprotozoal activity, and cheminformatic analysis of 2-Phenyl-2H-indazole derivatives. Molecules 2021 26 8 2145 10.3390/molecules26082145 33917871
    [Google Scholar]
  13. Polo E. Trilleras J. Ramos J. Galdámez A. Quiroga J. Gutierrez M. Efficient MW-assisted synthesis, spectroscopic characterization, X-ray and antioxidant properties of indazole derivatives. Molecules 2016 21 7 903 10.3390/molecules21070903 27409599
    [Google Scholar]
  14. Rodríguez-Villar K. Hernández-Campos A. Yépez-Mulia L. Sainz-Espuñes T.R. Soria-Arteche O. Palacios-Espinosa J.F. Cortés-Benítez F. Leyte-Lugo M. Varela-Petrissans B. Quintana-Salazar E.A. Pérez-Villanueva J. Design, synthesis and anticandidal evaluation of indazole and pyrazole derivatives. Pharmaceuticals 2021 14 3 176 10.3390/ph14030176 33668364
    [Google Scholar]
  15. Liu J. Wen Y. Gao L. Gao L. He F. Zhou J. Wang J. Dai R. Chen X. Kang D. Hu L. Design, synthesis and biological evaluation of novel 1 H -1,2,4-triazole, benzothiazole and indazole-based derivatives as potent FGFR1 inhibitors via fragment-based virtual screening. J. Enzyme Inhib. Med. Chem. 2020 35 1 72 84 10.1080/14756366.2019.1673745 31682465
    [Google Scholar]
  16. García-Valdivia A.A. Jannus F. García-García A. Choquesillo-Lazarte D. Fernández B. Medina-O’donnell M. Lupiáñez J.A. Cepeda J. Reyes-Zurita F.J. Rodríguez-Diéguez A. Anti-cancer and anti-inflammatory activities of a new family of coordination compounds based on divalent transition metal ions and indazole-3-carboxylic acid. J. Inorg. Biochem. 2021 215 111308 10.1016/j.jinorgbio.2020.111308 33257004
    [Google Scholar]
  17. Alim Z. 1H‐indazole molecules reduced the activity of human erythrocytes carbonic anhydrase I and II isoenzymes. J. Biochem. Mol. Toxicol. 2018 32 9 e22194 10.1002/jbt.22194 29984869
    [Google Scholar]
  18. Noble C. Cannaert A. Linnet K. Stove C.P. Application of an activity‐based receptor bioassay to investigate the in vitro activity of selected indole‐ and indazole‐3‐carboxamide‐based synthetic cannabinoids at CB1 and CB2 receptors. Drug Test. Anal. 2019 11 3 501 511 10.1002/dta.2517 30280499
    [Google Scholar]
  19. Bastos I.M. Rebelo S. Silva V.L.M. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem. Pharmacol. 2024 221 116045 10.1016/j.bcp.2024.116045 38336156
    [Google Scholar]
  20. Gaikwad D.D. Chapolikar A.D. Devkate C.G. Warad K.D. Tayade A.P. Pawar R.P. Domb A.J. Synthesis of indazole motifs and their medicinal importance: An overview. Eur. J. Med. Chem. 2015 90 707 731 10.1016/j.ejmech.2014.11.029 25506810
    [Google Scholar]
  21. Yu K.H. Hung H.Y. Synthetic strategy and structure–activity relationship (SAR) studies of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1, Lificiguat): a review. RSC Advances 2021 12 1 251 264 10.1039/D1RA08120A 35424505
    [Google Scholar]
  22. Kumar K.P. Vedavathi P. Subbaiah K.V. Reddy D.V.R. Raju C.N. Design, synthesis, spectral characterization and bioactivity evaluation of new sulfonamide and carbamate derivatives of 5-Nitro-1H-indazole. Organic Communications 2017 10 3 239 249 10.25135/acg.oc.24.17.05.023
    [Google Scholar]
  23. Denya I. Malan S.F. Joubert J. Indazole derivatives and their therapeutic applications: a patent review (2013-2017). Expert Opin. Ther. Pat. 2018 28 6 441 453 10.1080/13543776.2018.1472240 29718740
    [Google Scholar]
  24. Hoyt S.B. Taylor J. London C. Ali A. Ujjainwalla F. Tata J. Struthers M. Cully D. Wisniewski T. Ren N. Bopp C. Sok A. Verras A. McMasters D. Chen Q. Tung E. Tang W. Salituro G. Clemas J. Zhou G. MacNeil D. Duffy R. Xiong Y. Discovery of indazole aldosterone synthase (CYP11B2) inhibitors as potential treatments for hypertension. Bioorg. Med. Chem. Lett. 2017 27 11 2384 2388 10.1016/j.bmcl.2017.04.021 28416132
    [Google Scholar]
  25. Cao Y. Luo C. Yang P. Li P. Wu C. Indazole scaffold: a generalist for marketed and clinical drugs. Med. Chem. Res. 2021 30 3 501 518 10.1007/s00044‑020‑02665‑7
    [Google Scholar]
  26. Gross-goupil M. François L. Quivy A. Ravaud A. Axitinib: a review of its safety and efficacy in the treatment of adults with advanced renal cell carcinoma. Clin Med Insights Oncol. 2013 7 269 77
    [Google Scholar]
  27. Monk B.J. Pothuri B. Vergote I. Graybill W. Mirza M.R. Mccormick C.C. Lorusso D. Moore R.G. Freyer G. Cearbhaill R.E.O. Heitz F. Malley D.M.O. Redondo A. Shahin M.S. Vulsteke C. Bradley W.H. Haslund C.A. Chase D.M. Pisano C. Holman L.L. Pérez M.J.R. Disilvestro P. Gaba L. Herzog T.J. Bruchim I. Compton N. Shtessel L. Malinowska I.A. Niraparib Fi rst-line maintenance therapy in patients with newly diagnosed advanced ovarian cancer : Fi Nal overall survival results from the PRIMA /. Ann. Oncol. 2024 35 981 992 10.1016/j.annonc.2024.08.2241 39284381
    [Google Scholar]
  28. Mousa A.B. Sorafenib in the treatment of advanced hepatocellular carcinoma. Saudi J. Gastroenterol. 2008 14 1 40 42 10.4103/1319‑3767.37808 19568496
    [Google Scholar]
  29. Motzer R.J. Escudier B. Gannon A. Figlin R.A. Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist 2017 22 1 41 52 10.1634/theoncologist.2016‑0197 27807302
    [Google Scholar]
  30. Maroto P. Porta C. Capdevila J. Apolo A.B. Viteri S. Rodriguez-Antona C. Martin L. Castellano D. Cabozantinib for the treatment of solid tumors: a systematic review. Ther. Adv. Med. Oncol. 2022 14 17588359221107112 10.1177/17588359221107112 35847482
    [Google Scholar]
  31. Suyama K. Iwase H. Lenvatinib. Cancer Contr. 2018 25 1 1073274818789361 10.1177/1073274818789361 30032643
    [Google Scholar]
  32. Zhang X.H. Cao M.Q. Li X.X. Zhang T. Apatinib as an alternative therapy for advanced hepatocellular carcinoma. World J. Hepatol. 2020 12 10 766 774 10.4254/wjh.v12.i10.766 33200015
    [Google Scholar]
  33. Frampton J.E. Entrectinib: A Review in NTRK+ Solid Tumours and ROS1+ NSCLC. Drugs 2021 81 6 697 708 10.1007/s40265‑021‑01503‑3 33871816
    [Google Scholar]
  34. Chen J. Guo J. Chen Z. Wang J. Liu M. Pang X. Linifanib (ABT-869) potentiates the efficacy of chemotherapeutic agents through the suppression of receptor tyrosine kinase-mediated AKT/mTOR signaling pathways in gastric cancer. Sci. Rep. 2016 6 1 29382 10.1038/srep29382 27387652
    [Google Scholar]
  35. Plosker G.L. Goa K.L. Granisetron. Drugs 1991 42 5 805 824 10.2165/00003495‑199142050‑00007 1723376
    [Google Scholar]
  36. Ősz B.E. Jîtcă G. Sălcudean A. Rusz C.M. Vari C.E. Benzydamine—an affordable over-the-counter drug with psychoactive properties—from chemical structure to possible pharmacological properties. Pharmaceuticals (Basel) 2023 16 4 566 10.3390/ph16040566 37111323
    [Google Scholar]
  37. Guglielmotti A. Capezzone de Joannon A. Cazzolla N. Marchetti M. Soldo L. Cavallo G. Pinza M. Radical scavenger activity of bendazac, an anticataract non-steroidal anti-inflammatory agent. Pharmacol. Res. 1995 32 6 369 373 10.1016/S1043‑6618(05)80042‑8 8736488
    [Google Scholar]
  38. Elsayed N.M.Y. Serya R.A.T. Tolba M.F. Ahmed M. Barakat K. Abou El Ella D.A. Abouzid K.A.M. Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity. Bioorg. Chem. 2019 82 340 359 10.1016/j.bioorg.2018.10.071 30428414
    [Google Scholar]
  39. Abdelsalam E.A. Zaghary W.A. Amin K.M. Abou Taleb N.A. Mekawey A.A.I. Eldehna W.M. Abdel-Aziz H.A. Hammad S.F. Synthesis and in vitro anticancer evaluation of some fused indazoles, quinazolines and quinolines as potential EGFR inhibitors. Bioorg. Chem. 2019 89 102985 10.1016/j.bioorg.2019.102985 31121559
    [Google Scholar]
  40. Wang C. Zhu M. Long X. Wang Q. Wang Z. Ouyang G. Design, synthesis and antitumor activity of 1H-indazole-3-amine derivatives. Int. J. Mol. Sci 2023 24 10 8686
    [Google Scholar]
  41. El-Damasy A.K. Jin H. Seo S.H. Bang E.K. Keum G. Design, synthesis, and biological evaluations of novel 3-amino-4-ethynyl indazole derivatives as Bcr-Abl kinase inhibitors with potent cellular antileukemic activity. Eur. J. Med. Chem. 2020 207 112710 10.1016/j.ejmech.2020.112710 32961435
    [Google Scholar]
  42. Song F. Xu G. Gaul M.D. Zhao B. Lu T. Zhang R. DesJarlais R.L. DiLoreto K. Huebert N. Shook B. Rentzeperis D. Santulli R. Eckardt A. Demarest K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg. Med. Chem. Lett. 2019 29 15 1974 1980 10.1016/j.bmcl.2019.05.036 31138472
    [Google Scholar]
  43. Cui Y.J. Ma C.C. Zhang C.M. Tang L.Q. Liu Z.P. The discovery of novel indazole derivatives as tubulin colchicine site binding agents that displayed potent antitumor activity both in vitro and in vivo. Eur. J. Med. Chem. 2020 187 111968 10.1016/j.ejmech.2019.111968 31865012
    [Google Scholar]
  44. Pérez-Villanueva J. Matadamas-Martínez F. Yépez-Mulia L. Pérez-Koldenkova V. Leyte-Lugo M. Rodríguez-Villar K. Cortés-Benítez F. Macías-Jiménez A.P. González-Sánchez I. Romero-Velásquez A. Palacios-Espinosa J.F. Soria-Arteche O. Synthesis and cytotoxic activity of combretastatin A-4 and 2,3-Diphenyl-2H-indazole hybrids. Pharmaceuticals 2021 14 8 815 10.3390/ph14080815 34451912
    [Google Scholar]
  45. Laghchioua F.E. Kouakou A. Eddahmi M. Viale M. Monticone M. Gangemi R. Maric I. El Ammari L. Saadi M. Baltas M. Kandri Rodi Y. Rakib E.M. Antiproliferative and apoptotic activity of new indazole derivatives as potential anticancer agents. Arch. Pharm. (Weinheim) 2020 353 12 2000173 10.1002/ardp.202000173 32812268
    [Google Scholar]
  46. Wang S. Shi J.T. Wang X.R. Mu H.X. Wang X.T. Xu K.Y. Wang Q.S. Chen S.W. 1H-Indazoles derivatives targeting PI3K/AKT/mTOR pathway: Synthesis, anti-tumor effect and molecular mechanism. Bioorg. Chem. 2023 133 106412 10.1016/j.bioorg.2023.106412 36773456
    [Google Scholar]
  47. Al-tuwaijri H.M. Al-abdullah E.S. El-rashedy A.A. Ansari S.A. Almomen A. Alshibl H.M. Haiba M.E. Alkahtani H.M. New indazol-pyrimidine-based derivatives as selective anticancer agents: design, synthesis, and in silico studies. Molecules 2023 28 9 3664
    [Google Scholar]
  48. Mohamed Abdelahi M.M. El Bakri Y. Lai C.H. Subramani K. Anouar E.H. Ahmad S. Benchidmi M. Mague J.T. Popović-Djordjević J. Goumri-Said S. Novel 3-chloro-6-nitro-1 H -indazole derivatives as promising antileishmanial candidates: synthesis, biological activity, and molecular modelling studies. J. Enzyme Inhib. Med. Chem. 2022 37 1 151 167 10.1080/14756366.2021.1995380 34894940
    [Google Scholar]
  49. Burke A. Di Filippo M. Spiccio S. Schito A.M. Caviglia D. Brullo C. Baumann M. Antimicrobial evaluation of new pyrazoles, indazoles and pyrazolines prepared in continuous flow mode. Int. J. Mol. Sci. 2023 24 6 5319 10.3390/ijms24065319 36982392
    [Google Scholar]
  50. Luo G. Chen L. Easton A. Newton A. Bourin C. Shields E. Mosure K. Soars M.G. Knox R.J. Matchett M. Pieschl R.L. Post-Munson D.J. Wang S. Herrington J. Graef J. Newberry K. Sivarao D.V. Senapati A. Bristow L.J. Meanwell N.A. Thompson L.A. Dzierba C. Discovery of Indole- and Indazole-acylsulfonamides as Potent and Selective Na V 1.7 Inhibitors for the Treatment of Pain. J. Med. Chem. 2019 62 2 831 856 10.1021/acs.jmedchem.8b01550 30576602
    [Google Scholar]
  51. Hou S. Yang X. Yang Y. Tong Y. Chen Q. Wan B. Wei R. Lu T. Chen Y. Hu Q. Design, synthesis and biological evaluation of 1H-indazole derivatives as novel ASK1 inhibitors. Eur. J. Med. Chem. 2021 220 113482 10.1016/j.ejmech.2021.113482 33906048
    [Google Scholar]
  52. Im D. Jun J. Baek J. Kim H. Kang D. Bae H. Cho H. Hah J.M. Rational design and synthesis of 2-(1 H -indazol-6-yl)-1 H -benzo[d]imidazole derivatives as inhibitors targeting FMS-like tyrosine kinase 3 (FLT3) and its mutants. J. Enzyme Inhib. Med. Chem. 2022 37 1 472 486 10.1080/14756366.2021.2020772 35067150
    [Google Scholar]
  53. Fukuda T. Ueda K. Ishiyama T. Goto R. Muramatsu S. Hashimoto M. Watanabe K. Tanaka N. Synthesis and SAR studies of 3,6-disubstituted indazole derivatives as potent hepcidin production inhibitors. Bioorg. Med. Chem. Lett. 2017 27 10 2148 2152 10.1016/j.bmcl.2017.03.056 28377056
    [Google Scholar]
  54. Li L. Liu F. Jin N. Tang S. Chen Z. Yang X. Ding J. Geng M. Jiang L. Huang M. Cao J. Discovery and structure activity relationship study of novel indazole amide inhibitors for extracellular signal-regulated kinase1/2 (ERK1/2). Bioorg. Med. Chem. Lett. 2016 26 11 2600 2604 10.1016/j.bmcl.2016.04.029 27106711
    [Google Scholar]
  55. Liu J. Zhou J. He F. Gao L. Wen Y. Gao L. Wang P. Kang D. Hu L. Design, synthesis and biological evaluation of novel indazole-based derivatives as potent HDAC inhibitors via fragment-based virtual screening. Eur. J. Med. Chem. 2020 192 112189 10.1016/j.ejmech.2020.112189 32151834
    [Google Scholar]
/content/journals/mc/10.2174/0115734064360528241209074117
Loading
/content/journals/mc/10.2174/0115734064360528241209074117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test