Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

In this research aiming at combating COVID-19, we employed advanced computer-based methods to identify potential inhibitors of SARS-CoV-2 helicase from a pool of 3009 clinical and FDA-approved drugs.

Methods

To narrow down the candidates, we focused on , the helicase’s co-crystallized ligand, and sought compounds with chemical structures akin to within the examined drugs. The initial phase of our study involved molecular fingerprinting in addition to structure similarity studies.

Results

Once the compounds most closely resembling (29 compounds) were identified, we conducted various studies to investigate and validate the binding potential of these selected compounds to the protein’s active site. The subsequent phase included molecular docking, molecular dynamic (MD) simulations, and MM-PBSA studies against the SARS-CoV-2 helicase (PDB ID: 5RMM).

Conclusion

Based on our analyses, we identified nine compounds with promising potential as SARS-CoV-2 helicase inhibitors, namely aniracetam, aspirin, chromocarb, cinnamic acid, lawsone, loxoprofen, phenylglyoxylic acid, and antineoplaston A10. The findings of this research help the scientific community to further investigate these compounds, both and .

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064318640241112071225
2024-11-28
2025-06-19
Loading full text...

Full text loading...

References

  1. WHO COVID-19 Dashbord.2024Available from: https://data.who.int/dashboards/covid19/cases?n=c
    [Google Scholar]
  2. CiociolaA.A. CohenL.B. KulkarniP. KefalasC. BuchmanA. BurkeC. CainT. ConnorJ. EhrenpreisE.D. FangJ. FassR. KarlstadtR. PambiancoD. PhillipsJ. PochapinM. PockrosP. SchoenfeldP. VuppalanchiR. How drugs are developed and approved by the FDA: current process and future directions.Am. J. Gastroenterol.2014109562062310.1038/ajg.2013.407 24796999
    [Google Scholar]
  3. BrownD.G. WobstH.J. A decade of FDA-approved drugs (2010-2019): Trends and future directions.J. Med. Chem.20216452312233810.1021/acs.jmedchem.0c01516 33617254
    [Google Scholar]
  4. PushpakomS. IorioF. EyersP.A. EscottK.J. HopperS. WellsA. DoigA. GuilliamsT. LatimerJ. McNameeC. NorrisA. SanseauP. CavallaD. PirmohamedM. Drug repurposing: progress, challenges and recommendations.Nat. Rev. Drug Discov.2019181415810.1038/nrd.2018.168 30310233
    [Google Scholar]
  5. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  6. Drożdżal, S.; Rosik, J.; Lechowicz, K.; Machaj, F.; Kotfis, K.; Ghavami, S.; Łos, M.J. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy.Drug Resist. Updat.20205310071910.1016/j.drup.2020.100719 32717568
    [Google Scholar]
  7. XiongH.L. CaoJ.L. ShenC.G. MaJ. QiaoX.Y. ShiT.S. GeS.X. YeH.M. ZhangJ. YuanQ. ZhangT.Y. XiaN.S. Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro.Front. Pharmacol.20211160959210.3389/fphar.2020.609592 33613282
    [Google Scholar]
  8. EngelT. Basic overview of chemoinformatics.J. Chem. Inf. Model.20064662267227710.1021/ci600234z 17125169
    [Google Scholar]
  9. ChenW.L. Chemoinformatics: past, present, and future.J. Chem. Inf. Model.20064662230225510.1021/ci060016u 17125167
    [Google Scholar]
  10. WestermaierY. BarrilX. ScapozzaL. Virtual screening: An in silico tool for interlacing the chemical universe with the proteome.Methods201571445710.1016/j.ymeth.2014.08.001 25193260
    [Google Scholar]
  11. ShakerB. AhmadS. LeeJ. JungC. NaD. In silico methods and tools for drug discovery.Comput. Biol. Med.202113710485110.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  12. LinH. The computational methods in drug targets discovery.Curr. Drug Targets201920547948010.2174/138945012005190218093921 30887916
    [Google Scholar]
  13. KortagereS. EkinsS. Troubleshooting computational methods in drug discovery.J. Pharmacol. Toxicol. Methods2010612677510.1016/j.vascn.2010.02.005 20176118
    [Google Scholar]
  14. RanjanS. DevarapalliR. KunduS. SahaS. DeolkaS. VangalaV.R. ReddyC.M. Isomorphism: ‘molecular similarity to crystal structure similarity’ in multicomponent forms of analgesic drugs tolfenamic and mefenamic acid.IUCrJ20207217318310.1107/S205225251901604X 32148846
    [Google Scholar]
  15. BaidyaA.T.K. GhoshK. AminS.A. AdhikariN. NirmalJ. JhaT. GayenS. In silico modelling, identification of crucial molecular fingerprints, and prediction of new possible substrates of human organic cationic transporters 1 and 2.New J. Chem.202044104129414310.1039/C9NJ05825G
    [Google Scholar]
  16. ShiY. Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds.Sci. Rep.2021111880610.1038/s41598‑021‑88341‑1 33888843
    [Google Scholar]
  17. IdrisM.O. YekeenA.A. AlakanseO.S. DurojayeO.A. Computer-aided screening for potential TMPRSS2 inhibitors: a combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches.J. Biomol. Struct. Dyn.202139155638565610.1080/07391102.2020.1792346 32672528
    [Google Scholar]
  18. LuY. LiM. A new computer model for evaluating the selective binding affinity of phenylalkylamines to T-Type Ca2+ channels.Pharmaceuticals (Basel)202114214110.3390/ph14020141 33578931
    [Google Scholar]
  19. ZhanzhaxinaA. SuleimenY. MetwalyA.M. EissaI.H. ElkaeedE.B. SuleimenR. IshmuratovaM. AkatanK. LuytenW. In vitro and in silico cytotoxic and antibacterial activities of a diterpene from Cousinia alata Schrenk.J. Chem.202120211554245510.1155/2021/5542455
    [Google Scholar]
  20. JalmakhanbetovaR.I. ElkaeedE.B. EissaI.H. MetwalyA.M. SuleimenY.M. Synthesis and molecular docking of some grossgemin amino derivatives as tubulin inhibitors targeting colchicine binding site.J. Chem.202120211558651510.1155/2021/5586515
    [Google Scholar]
  21. ImiejeV.O. Antileishmanial derivatives of humulene from Asteriscus hierochunticus with in silico tubulin inhibition potential.Rec. Nat. Prod.202116150171
    [Google Scholar]
  22. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  23. RafiM.O. Al-KhafajiK. TokT.T. RahmanM.S. Computer-based identification of potential compounds from Salviae miltiorrhizae against Neirisaral adhesion A regulatory protein.J. Biomol. Struct. Dyn.2020401043014313 33289608
    [Google Scholar]
  24. AlRawashdehS. BarakatK.H. Applications of molecular dynamics simulations in drug discovery.Methods Mol. Biol.2024271412714110.1007/978‑1‑0716‑3441‑7_7 37676596
    [Google Scholar]
  25. MetwalyA.M. Abdel-RaoofA.M. AlattarA.M. El-ZomrawyA.A. AshmawyA.M. MetwallyM.G. Abu-SaiedM.A. LotfyA.M. AlsfoukB.A. ElkaeedE.B. EissaI.H. Preparation and characterization of patuletin-loaded chitosan nanoparticles with improved selectivity and safety profiles for anticancer applications.J. Chem.2023202311110.1155/2023/6684015
    [Google Scholar]
  26. MetwalyA.M. Abu-SaiedM.A. GobaaraI.M.M. LotfyA.M. AlsfoukB.A. ElkaeedE.B. EissaI.H. Nicotinamide loaded chitosan nanocomplex shows improved anticancer potential: Molecular docking, synthesis, characterization and in vitro evaluations.Curr. Org. Chem.2024281465510.2174/0113852728283226231227061211
    [Google Scholar]
  27. HusainA. FarooquiA. KhanamA. SharmaS. MahfoozS. ShamimA. AkhterF. AlatarA.A. FaisalM. AhmadS. Physicochemical characterization of C-phycocyanin from Plectonema sp. and elucidation of its bioactive potential through in silico approach.Cell. Mol. Biol.2022674688210.14715/cmb/2021.67.4.8 35809301
    [Google Scholar]
  28. SuleimenY.M. MetwalyA.M. MostafaA.E. ElkaeedE.B. LiuH.W. BasnetB.B. SuleimenR.N. IshmuratovaM.Y. TurdybekovK.M. Van Hecke K. Isolation, crystal structure, and in silico aromatase inhibition activity of Ergosta-5, 22-dien-3β-ol from the Fungus Gyromitra esculenta.J. Chem.2021202115529786
    [Google Scholar]
  29. DaoudN.E.H. BorahP. DebP.K. VenugopalaK.N. HouraniW. AlzweiriM. BardaweelS.K. TiwariV. ADMET profiling in drug discovery and development: perspectives of in silico , in vitro and integrated approaches.Curr. Drug Metab.202122750352210.2174/1389200222666210705122913 34225615
    [Google Scholar]
  30. AmerH.H. AlotaibiS.H. TrawnehA.H. MetwalyA.M. EissaI.H. Anticancer activity, spectroscopic and molecular docking of some new synthesized sugar hydrazones, Arylidene and α--Aminophosphonate derivatives.Arab. J. Chem.2021141010334810.1016/j.arabjc.2021.103348
    [Google Scholar]
  31. ElkaeedE.B. EissaI.H. SalehA.M. AlsfoukB.A. MetwalyA.M. Computer-aided drug discovery of natural antiviral metabolites as potential SARS-CoV-2 helicase inhibitors.J. Chem. Res.20244811747519823122125310.1177/17475198231221253
    [Google Scholar]
  32. ElkaeedE.B. YoussefF.S. EissaI.H. ElkadyH. AlsfoukA.A. AshourM.L. El HassabM.A. Abou-SeriS.M. MetwalyA.M. Multi-step in silico discovery of natural drugs against COVID-19 targeting main protease.Int. J. Mol. Sci.20222313691210.3390/ijms23136912 35805916
    [Google Scholar]
  33. ElkaeedE.B. EissaI.H. ElkadyH. AbdelalimA. AlqaisiA.M. AlsfoukA.A. ElwanA. MetwalyA.M. A multistage in silico study of natural potential inhibitors targeting SARS-CoV-2 main protease.Int. J. Mol. Sci.20222315840710.3390/ijms23158407 35955547
    [Google Scholar]
  34. EissaI.H. KhalifaM.M. ElkaeedE.B. HafezE.E. AlsfoukA.A. MetwalyA.M. In silico exploration of potential natural inhibitors against SARS-CoV-2 NSP10.Molecules20212620615110.3390/molecules26206151 34684735
    [Google Scholar]
  35. ElkaeedE.B. MetwalyA.M. AlesawyM.S. SalehA.M. AlsfoukA.A. EissaI.H. Discovery of potential SARS-CoV-2 papain-like protease natural inhibitors employing a multi-phase in silico approach.Life (Basel)2022129140710.3390/life12091407 36143445
    [Google Scholar]
  36. ElkaeedE.B. Multi-phase in silico discovery of potential SARS-CoV-2 RNA-dependent RNA polymerase inhibitors among 3009 clinical and FDA-approved related drugs.Processes 202210530
    [Google Scholar]
  37. EissaI.H. SalehA.M. Al-RashoodS.T. El-AttarA-A.M.M. MetwalyA.M. Multistaged in silico discovery of the best SARS-CoV-2 main protease inhibitors amongst 3009 clinical and FDA-approved compounds.J. Chem.2024202411910.1155/2024/5084553
    [Google Scholar]
  38. EissaI.H. Ligand and structure-based in silico determination of the most promising SARS-CoV-2 nsp16-nsp10 2′-o-methyltransferase complex inhibitors among 3009 FDA approved drugs.Molecules20222772287
    [Google Scholar]
  39. MetwalyAM AlesawyMS AlsfoukBA IbrahimIM ElkaeedEB EissaIH Computer-assisted drug discovery of potential African Anti-SARS-CoV-2 natural products targeting the helicase protein. Nat. Prod. Commun,20241941934578x24124673810.1177/1934578X241246738
    [Google Scholar]
  40. ElkaeedE.B. AlsfoukB.A. IbrahimT.H. ArafaR.K. ElkadyH. IbrahimI.M. EissaI.H. MetwalyA.M. Computer-assisted drug discovery of potential natural inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase through a multi-phase in silico approach.Antivir. Ther.20232851359653523119983810.1177/13596535231199838 37669909
    [Google Scholar]
  41. ElkaeedE.B. KhalifaM.M. AlsfoukB.A. AlsfoukA.A. El-AttarA.A.M.M. EissaI.H. MetwalyA.M. The discovery of potential SARS-CoV-2 natural inhibitors among 4924 african metabolites targeting the papain-like protease: A multi-phase in silico approach.Metabolites20221211112210.3390/metabo12111122 36422263
    [Google Scholar]
  42. MetwalyA.M. ElwanA. El-AttarA-A.M.M. Al-RashoodS.T. EissaI.H. Structure-based virtual screening, docking, ADMET, molecular dynamics, and MM-PBSA calculations for the discovery of potential natural SARS-CoV-2 helicase inhibitors from the traditional chinese medicine.J. Chem.2022202212310.1155/2022/7270094
    [Google Scholar]
  43. IvanovK.A. ThielV. DobbeJ.C. van der MeerY. SnijderE.J. ZiebuhrJ. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase.J. Virol.200478115619563210.1128/JVI.78.11.5619‑5632.2004 15140959
    [Google Scholar]
  44. FDA-approved Drug Library2022Available from: https://www.selleckchem.com/screening/fda-approved-drug-library.html
  45. MetwalyA.M. ElkaeedE.B. AlsfoukB.A. SalehA.M. MostafaA.E. EissaI.H. The computational preventive potential of the rare flavonoid, patuletin, isolated from Tagetes patula, against SARS-CoV-2.Plants20221114188610.3390/plants11141886 35890520
    [Google Scholar]
  46. MetwalyA. SalehM.M. AlsfoukA. IbrahimI.M. Abd-ElraoufM. ElkaeedE. ElkadyH. EissaI. In silico and in vitro evaluation of the anti-virulence potential of patuletin, a natural methoxy flavone, against Pseudomonas aeruginosa.PeerJ202412e1682610.7717/peerj.16826 38313021
    [Google Scholar]
  47. MetwalyA.M. SalehM.M. AlsfoukB.A. IbrahimI.M. Abd-ElraoufM. ElkaeedE.B. EissaI.H. Anti-virulence potential of patuletin, a natural flavone, against Staphylococcus aureus: In vitro and In silico investigations.Heliyon2024102e2407510.1016/j.heliyon.2024.e24075 38293404
    [Google Scholar]
  48. Visualizer, discovery studio visualizer. 2. Accelrys software Inc.2005
    [Google Scholar]
  49. JoS. KimT. IyerV.G. Im, W. CHARMMGUI: A webbased graphical user interface for CHARMM.J. Comput. Chem.200829111859186510.1002/jcc.20945 18351591
    [Google Scholar]
  50. BrooksB.R. BrooksC.L.III MackerellA.D.Jr NilssonL. PetrellaR.J. RouxB. WonY. ArchontisG. BartelsC. BoreschS. CaflischA. CavesL. CuiQ. DinnerA.R. FeigM. FischerS. GaoJ. HodoscekM. Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: The biomolecular simulation program.J. Comput. Chem.200930101545161410.1002/jcc.21287 19444816
    [Google Scholar]
  51. LeeJ. ChengX. SwailsJ.M. YeomM.S. EastmanP.K. LemkulJ.A. WeiS. BucknerJ. JeongJ.C. QiY. JoS. PandeV.S. CaseD.A. BrooksC.L.III MacKerellA.D.Jr KlaudaJ.B. Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field.J. Chem. Theory Comput.201612140541310.1021/acs.jctc.5b00935 26631602
    [Google Scholar]
  52. BestR.B. ZhuX. ShimJ. LopesP.E.M. MittalJ. FeigM. MacKerellA.D.Jr Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles.J. Chem. Theory Comput.2012893257327310.1021/ct300400x 23341755
    [Google Scholar]
  53. PhillipsJ.C. BraunR. WangW. GumbartJ. TajkhorshidE. VillaE. ChipotC. SkeelR.D. KaléL. SchultenK. Scalable molecular dynamics with NAMD.J. Comput. Chem.200526161781180210.1002/jcc.20289 16222654
    [Google Scholar]
  54. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  55. YuW. HeX. VanommeslaegheK. MacKerellA.D.Jr Extension of the CHARMM general force field to sulfonylcontaining compounds and its utility in biomolecular simulations.J. Comput. Chem.201233312451246810.1002/jcc.23067 22821581
    [Google Scholar]
  56. NoséS. KleinM.L. Constant pressure molecular dynamics for molecular systems.Mol. Phys.19835051055107610.1080/00268978300102851
    [Google Scholar]
  57. NoséS. A molecular dynamics method for simulations in the canonical ensemble.Mol. Phys.198452225526810.1080/00268978400101201
    [Google Scholar]
  58. GrestG.S. KremerK. Molecular dynamics simulation for polymers in the presence of a heat bath.Phys. Rev. A Gen. Phys.19863353628363110.1103/PhysRevA.33.3628 9897103
    [Google Scholar]
  59. DardenT. YorkD. PedersenL. Particle mesh Ewald: An N ⋅log(N) method for Ewald sums in large systems.J. Chem. Phys.19939812100891009210.1063/1.464397
    [Google Scholar]
  60. EssmannU. PereraL. BerkowitzM.L. DardenT. LeeH. PedersenL.G. A smooth particle mesh Ewald method.J. Chem. Phys.1995103198577859310.1063/1.470117
    [Google Scholar]
  61. RyckaertJ.P. CiccottiG. BerendsenH.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes.J. Comput. Phys.197723332734110.1016/0021‑9991(77)90098‑5
    [Google Scholar]
  62. GenhedenS. RydeU. Comparison of endpoint continuumsolvation methods for the calculation of protein–ligand binding free energies.Proteins20128051326134210.1002/prot.24029 22274991
    [Google Scholar]
  63. WangE. SunH. WangJ. WangZ. LiuH. ZhangJ.Z.H. HouT. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design.Chem. Rev.2019119169478950810.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  64. BaiQ. TanS. XuT. LiuH. HuangJ. YaoX. MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm.Brief. Bioinform.2021223bbaa16110.1093/bib/bbaa161 32778891
    [Google Scholar]
  65. TongW. WelshW.J. ShiL. FangH. PerkinsR. Structureactivity relationship approaches and applications.Environ. Toxicol. Chem.20032281680169510.1897/01‑198 12924570
    [Google Scholar]
  66. BriemH. KuntzI.D. Molecular similarity based on DOCK-generated fingerprints.J. Med. Chem.199639173401340810.1021/jm950800y 8765524
    [Google Scholar]
  67. JanelaT. TakeuchiK. BajorathJ. Introducing a chemically intuitive core-substituent fingerprint designed to explore structural requirements for effective similarity searching and machine learning.Molecules2022277233110.3390/molecules27072331 35408730
    [Google Scholar]
  68. MaggioraG. VogtM. StumpfeD. BajorathJ. Molecular similarity in medicinal chemistry.J. Med. Chem.20145783186320410.1021/jm401411z 24151987
    [Google Scholar]
  69. BajorathJ. Molecular similarity concepts for informatics applications.Methods Mol. Biol.2017152623124510.1007/978‑1‑4939‑6613‑4_13 27896745
    [Google Scholar]
  70. KerriganJ.E. Molecular dynamics simulations in drug design.Methods Mol. Biol.20139939511310.1007/978‑1‑62703‑342‑8_7 23568466
    [Google Scholar]
  71. LiuX. ShiD. ZhouS. LiuH. LiuH. YaoX. Molecular dynamics simulations and novel drug discovery.Expert Opin. Drug Discov.2018131233710.1080/17460441.2018.1403419 29139324
    [Google Scholar]
  72. WuX. XuL.Y. LiE.M. DongG. Application of molecular dynamics simulation in biomedicine.Chem. Biol. Drug Des.202299578980010.1111/cbdd.14038 35293126
    [Google Scholar]
  73. LiuP. LuJ. YuH. RenN. LockwoodF.E. WangQ.J. Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations.J. Chem. Phys.2017147808490410.1063/1.4986552 28863549
    [Google Scholar]
  74. BriceA.R. DominyB.N. Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions.J. Comput. Chem.20113271431144010.1002/jcc.21727 21284003
    [Google Scholar]
  75. HomeyerN. GohlkeH. Free energy calculations by the molecular mechanics poisson-boltzmann surface area method.Mol. Inform.201231211412210.1002/minf.201100135 27476956
    [Google Scholar]
/content/journals/mc/10.2174/0115734064318640241112071225
Loading
/content/journals/mc/10.2174/0115734064318640241112071225
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test