Skip to content
2000
image of Identification of Potential FDA-Approved Inhibitors of SARS-CoV-2 Helicase Through a Multistep In Silico Approach: A Promising Prospect for COVID-19 Treatment

Abstract

Introduction

In this research aiming at combating COVID-19, we employed advanced computer-based methods to identify potential inhibitors of SARS-CoV-2 helicase from a pool of 3009 clinical and FDA-approved drugs. Method: To narrow down the candidates, we focused on , the helicase’s co-crystallized ligand, and sought compounds with chemical structures akin to within the examined drugs. The initial phase of our study involved molecular fingerprinting in addition to structure similarity studies. Results: Once the compounds most closely resembling (29 compounds) were identified, we conducted various studies to investigate and validate the binding potential of these selected compounds to the protein’s active site. The subsequent phase included molecular docking, molecular dynamic (MD) simulations, and MM-PBSA studies against the SARS-CoV-2 helicase (PDB ID: 5RMM).

Conclusion

Based on our analyses, we identified nine compounds with promising potential as SARS-CoV-2 helicase inhibitors, namely aniracetam, aspirin, chromocarb, cinnamic acid, lawsone, loxoprofen, phenylglyoxylic acid, and antineoplaston A10. The findings of this research help the scientific community to further investigate these compounds, both and .

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064318640241112071225
2024-11-28
2025-01-24
Loading full text...

Full text loading...

References

  1. WHO. COVID-19 Dashbord. 2024 Available from: https://data.who.int/dashboards/covid19/cases?n=c
  2. Ciociola A.A. Cohen L.B. Kulkarni P. Kefalas C. Buchman A. Burke C. Cain T. Connor J. Ehrenpreis E.D. Fang J. Fass R. Karlstadt R. Pambianco D. Phillips J. Pochapin M. Pockros P. Schoenfeld P. Vuppalanchi R. How drugs are developed and approved by the FDA: current process and future directions. Am. J. Gastroenterol. 2014 109 5 620 623 10.1038/ajg.2013.407 24796999
    [Google Scholar]
  3. Brown D.G. Wobst H.J. A Decade of FDA-Approved Drugs (2010–2019): Trends and Future Directions. J. Med. Chem. 2021 64 5 2312 2338 10.1021/acs.jmedchem.0c01516 33617254
    [Google Scholar]
  4. Pushpakom S. Iorio F. Eyers P.A. Escott K.J. Hopper S. Wells A. Doig A. Guilliams T. Latimer J. McNamee C. Norris A. Sanseau P. Cavalla D. Pirmohamed M. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019 18 1 41 58 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  5. Chan H.C.S. Shan H. Dahoun T. Vogel H. Yuan S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharmacol. Sci. 2019 40 8 592 604 10.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  6. Drożdżal S. Rosik J. Lechowicz K. Machaj F. Kotfis K. Ghavami S. Łos M.J. FDA approved drugs with pharmacotherapeutic potential for SARS-CoV-2 (COVID-19) therapy. Drug Resist. Updat. 2020 53 100719 10.1016/j.drup.2020.100719 32717568
    [Google Scholar]
  7. Xiong H.L. Cao J.L. Shen C.G. Ma J. Qiao X.Y. Shi T.S. Ge S.X. Ye H.M. Zhang J. Yuan Q. Zhang T.Y. Xia N.S. Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro. Front. Pharmacol. 2021 11 609592 10.3389/fphar.2020.609592 33613282
    [Google Scholar]
  8. Engel T. Basic overview of chemoinformatics. J. Chem. Inf. Model. 2006 46 6 2267 2277 10.1021/ci600234z 17125169
    [Google Scholar]
  9. Chen W.L. Chemoinformatics: past, present, and future. J. Chem. Inf. Model. 2006 46 6 2230 2255 10.1021/ci060016u 17125167
    [Google Scholar]
  10. Westermaier Y. Barril X. Scapozza L. Virtual screening: An in silico tool for interlacing the chemical universe with the proteome. Methods 2015 71 44 57 10.1016/j.ymeth.2014.08.001 25193260
    [Google Scholar]
  11. Shaker B. Ahmad S. Lee J. Jung C. Na D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021 137 104851 10.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  12. Lin H. The Computational Methods in Drug Targets Discovery. Curr. Drug Targets 2019 20 5 479 480 10.2174/138945012005190218093921 30887916
    [Google Scholar]
  13. Kortagere S. Ekins S. Troubleshooting computational methods in drug discovery. J. Pharmacol. Toxicol. Methods 2010 61 2 67 75 10.1016/j.vascn.2010.02.005 20176118
    [Google Scholar]
  14. Ranjan S. Devarapalli R. Kundu S. Saha S. Deolka S. Vangala V.R. Reddy C.M. Isomorphism: ‘molecular similarity to crystal structure similarity’ in multicomponent forms of analgesic drugs tolfenamic and mefenamic acid. IUCrJ 2020 7 2 173 183 10.1107/S205225251901604X 32148846
    [Google Scholar]
  15. Baidya A.T.K. Ghosh K. Amin S.A. Adhikari N. Nirmal J. Jha T. Gayen S. In silico modelling, identification of crucial molecular fingerprints, and prediction of new possible substrates of human organic cationic transporters 1 and 2. New J. Chem. 2020 44 10 4129 4143 10.1039/C9NJ05825G
    [Google Scholar]
  16. Shi Y. Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds. Sci. Rep. 2021 11 1 8806 10.1038/s41598‑021‑88341‑1 33888843
    [Google Scholar]
  17. Idris M.O. Yekeen A.A. Alakanse O.S. Durojaye O.A. Computer-aided screening for potential TMPRSS2 inhibitors: a combination of pharmacophore modeling, molecular docking and molecular dynamics simulation approaches. J. Biomol. Struct. Dyn. 2021 39 15 5638 5656 10.1080/07391102.2020.1792346 32672528
    [Google Scholar]
  18. Lu Y. Li M. A new computer model for evaluating the selective binding affinity of phenylalkylamines to T-Type Ca2+ channels. Pharmaceuticals (Basel) 2021 14 2 141 10.3390/ph14020141 33578931
    [Google Scholar]
  19. Zhanzhaxina A. In vitro and in silico cytotoxic and antibacterial activities of a diterpene from Cousinia alata Schrenk. J. Chem. 2021 2021 5542455 10.1155/2021/5542455
    [Google Scholar]
  20. Jalmakhanbetova R. Synthesis and molecular docking of some grossgemin amino derivatives as tubulin inhibitors targeting colchicine binding site. J. Chem. 2021 2021 5586515 10.1155/2021/5586515
    [Google Scholar]
  21. Imieje V.O. Antileishmanial derivatives of humulene from Asteriscus hierochunticus with in silico tubulin inhibition potential. Rec. Nat. Prod. 2021 16 150 171
    [Google Scholar]
  22. Pinzi L. Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  23. Rafi M.O. Computer-based identification of potential compounds from Salviae miltiorrhizae against Neirisaral adhesion A regulatory protein. J. Biomol. Struct. Dyn. 2020 1 13 33289608
    [Google Scholar]
  24. AlRawashdeh S. Barakat K.H. Applications of Molecular Dynamics Simulations in Drug Discovery. Methods Mol. Biol. 2024 2714 127 141 10.1007/978‑1‑0716‑3441‑7_7 37676596
    [Google Scholar]
  25. Metwaly A.M. Abdel-Raoof A.M. Alattar A.M. El-Zomrawy A.A. Ashmawy A.M. Metwally M.G. Abu-Saied M.A. Lotfy A.M. Alsfouk B.A. Elkaeed E.B. Eissa I.H. Preparation and Characterization of Patuletin-Loaded Chitosan Nanoparticles with Improved Selectivity and Safety Profiles for Anticancer Applications. J. Chem. 2023 2023 1 11 10.1155/2023/6684015
    [Google Scholar]
  26. Metwaly A.M. Abu-Saied M.A. Gobaara I.M.M. Lotfy A.M. Alsfouk B.A. Elkaeed E.B. Eissa I.H. Nicotinamide Loaded Chitosan Nanocomplex Shows Improved Anticancer Potential: Molecular Docking, Synthesis, Characterization and in vitro Evaluations. Curr. Org. Chem. 2024 28 1 46 55 10.2174/0113852728283226231227061211
    [Google Scholar]
  27. Husain A. Farooqui A. Khanam A. Sharma S. Mahfooz S. Shamim A. Akhter F. Alatar A.A. Faisal M. Ahmad S. Physicochemical characterization of C-phycocyanin from Plectonema sp. and elucidation of its bioactive potential through in silico approach. Cell. Mol. Biol. 2022 67 4 68 82 10.14715/cmb/2021.67.4.8 35809301
    [Google Scholar]
  28. Suleimen Y.M. Isolation, crystal structure, and in silico aromatase inhibition activity of Ergosta-5, 22-dien-3β-ol from the Fungus Gyromitra esculenta. J. Chem. 2021 2021
    [Google Scholar]
  29. Daoud N.E.H. Borah P. Deb P.K. Venugopala K.N. Hourani W. Alzweiri M. Bardaweel S.K. Tiwari V. ADMET profiling in drug discovery and development: perspectives of in silico, in vitro and integrated approaches. Curr. Drug Metab. 2021 22 7 503 522 10.2174/1389200222666210705122913 34225615
    [Google Scholar]
  30. Amer H.H. Alotaibi S.H. Trawneh A.H. Metwaly A.M. Eissa I.H. Anticancer activity, spectroscopic and molecular docking of some new synthesized sugar hydrazones, Arylidene and α-Aminophosphonate derivatives. Arab. J. Chem. 2021 14 10 103348 10.1016/j.arabjc.2021.103348
    [Google Scholar]
  31. Elkaeed E.B. Eissa I.H. Saleh A.M. Alsfouk B.A. Metwaly A.M. Computer-aided drug discovery of natural antiviral metabolites as potential SARS-CoV-2 helicase inhibitors. J. Chem. Res. 2024 48 1 17475198231221253 10.1177/17475198231221253
    [Google Scholar]
  32. Elkaeed E.B. Youssef F.S. Eissa I.H. Elkady H. Alsfouk A.A. Ashour M.L. El Hassab M.A. Abou-Seri S.M. Metwaly A.M. Multi-step in silico discovery of natural drugs against COVID-19 targeting main protease. Int. J. Mol. Sci. 2022 23 13 6912 10.3390/ijms23136912 35805916
    [Google Scholar]
  33. Elkaeed E.B. Eissa I.H. Elkady H. Abdelalim A. Alqaisi A.M. Alsfouk A.A. Elwan A. Metwaly A.M. A multistage in silico study of natural potential inhibitors targeting SARS-CoV-2 main protease. Int. J. Mol. Sci. 2022 23 15 8407 10.3390/ijms23158407 35955547
    [Google Scholar]
  34. Eissa I.H. Khalifa M.M. Elkaeed E.B. Hafez E.E. Alsfouk A.A. Metwaly A.M. In silico exploration of potential natural inhibitors against SARS-Cov-2 nsp10. Molecules 2021 26 20 6151 10.3390/molecules26206151 34684735
    [Google Scholar]
  35. Elkaeed E.B. Metwaly A.M. Alesawy M.S. Saleh A.M. Alsfouk A.A. Eissa I.H. Discovery of potential SARS-CoV-2 papain-like protease natural inhibitors employing a multi-phase in silico approach. Life (Basel) 2022 12 9 1407 10.3390/life12091407 36143445
    [Google Scholar]
  36. Elkaeed E.B. Multi-phase in silico discovery of potential SARS-CoV-2 RNA-Dependent RNA Polymerase Inhibitors among 3009 Clinical and FDA-Approved Related Drugs. Processes 2022 10 530
    [Google Scholar]
  37. Eissa I.H. Saleh A.M. Al-Rashood S.T. El-Attar A-A.M.M. Metwaly A.M. Multistaged in silico Discovery of the Best SARS-CoV-2 Main Protease Inhibitors amongst 3009 Clinical and FDA-Approved Compounds. J. Chem. 2024 2024 1 19 10.1155/2024/5084553
    [Google Scholar]
  38. Eissa I.H. Ligand and structure-based in silico determination of the most promising SARS-CoV-2 nsp16-nsp10 2'-o-Methyltransferase Complex Inhibitors among 3009 FDA Approved Drugs. Molecules. 2022 27 7 2287
    [Google Scholar]
  39. Metwaly A.M. Computer-assisted drug discovery of potential African Anti-SARS-CoV-2 natural products targeting the helicase protein. Nat. Prod. Commun 2024 19 4 10.1177/1934578X241246738
    [Google Scholar]
  40. Elkaeed E.B. Alsfouk B.A. Ibrahim T.H. Arafa R.K. Elkady H. Ibrahim I.M. Eissa I.H. Metwaly A.M. Computer-assisted drug discovery of potential natural inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase through a multi-phase in silico approach. Antivir. Ther. 2023 28 5 13596535231199838 10.1177/13596535231199838 37669909
    [Google Scholar]
  41. Elkaeed E.B. Khalifa M.M. Alsfouk B.A. Alsfouk A.A. El-Attar A.A.M.M. Eissa I.H. Metwaly A.M. The Discovery of Potential SARS-CoV-2 Natural Inhibitors among 4924 African Metabolites Targeting the Papain-like Protease: A Multi-Phase in silico Approach. Metabolites 2022 12 11 1122 10.3390/metabo12111122 36422263
    [Google Scholar]
  42. Metwaly A.M. Elwan A. El-Attar A-A.M.M. Al-Rashood S.T. Eissa I.H. Structure-Based Virtual Screening, Docking, ADMET, Molecular Dynamics, and MM-PBSA Calculations for the Discovery of Potential Natural SARS-CoV-2 Helicase Inhibitors from the Traditional Chinese Medicine. J. Chem. 2022 2022 1 23 10.1155/2022/7270094
    [Google Scholar]
  43. Ivanov K.A. Thiel V. Dobbe J.C. van der Meer Y. Snijder E.J. Ziebuhr J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 2004 78 11 5619 5632 10.1128/JVI.78.11.5619‑5632.2004 15140959
    [Google Scholar]
  44. FDA-approved Drug Library. 2022 Available from: https://www.selleckchem.com/screening/fda-approved-drug-library.html
  45. Metwaly A.M. Elkaeed E.B. Alsfouk B.A. Saleh A.M. Mostafa A.E. Eissa I.H. The Computational Preventive Potential of the Rare Flavonoid, Patuletin, Isolated from Tagetes patula, against SARS-CoV-2. Plants 2022 11 14 1886 10.3390/plants11141886 35890520
    [Google Scholar]
  46. Metwaly A. Saleh M.M. Alsfouk A. Ibrahim I.M. Abd-Elraouf M. Elkaeed E. Elkady H. Eissa I. In silico and in vitro evaluation of the anti-virulence potential of patuletin, a natural methoxy flavone, against Pseudomonas aeruginosa. PeerJ 2024 12 e16826 10.7717/peerj.16826 38313021
    [Google Scholar]
  47. Metwaly A.M. Saleh M.M. Alsfouk B.A. Ibrahim I.M. Abd-Elraouf M. Elkaeed E.B. Eissa I.H. Anti-virulence potential of patuletin, a natural flavone, against Staphylococcus aureus: In vitro and In silico investigations. Heliyon 2024 10 2 e24075 10.1016/j.heliyon.2024.e24075 38293404
    [Google Scholar]
  48. Visualizer, Discovery Studio Visualizer. 2. Accelrys software Inc. 2005
    [Google Scholar]
  49. Jo S. Kim T. Iyer V.G. Im W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 2008 29 11 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  50. Brooks B.R. Brooks C.L. III Mackerell A.D. Jr Nilsson L. Petrella R.J. Roux B. Won Y. Archontis G. Bartels C. Boresch S. Caflisch A. Caves L. Cui Q. Dinner A.R. Feig M. Fischer S. Gao J. Hodoscek M. Im W. Kuczera K. Lazaridis T. Ma J. Ovchinnikov V. Paci E. Pastor R.W. Post C.B. Pu J.Z. Schaefer M. Tidor B. Venable R.M. Woodcock H.L. Wu X. Yang W. York D.M. Karplus M. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009 30 10 1545 1614 10.1002/jcc.21287 19444816
    [Google Scholar]
  51. Lee J. Cheng X. Swails J.M. Yeom M.S. Eastman P.K. Lemkul J.A. Wei S. Buckner J. Jeong J.C. Qi Y. Jo S. Pande V.S. Case D.A. Brooks C.L. III MacKerell A.D. Jr Klauda J.B. Im W. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016 12 1 405 413 10.1021/acs.jctc.5b00935 26631602
    [Google Scholar]
  52. Best R.B. Zhu X. Shim J. Lopes P.E.M. Mittal J. Feig M. MacKerell A.D. Jr Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 2012 8 9 3257 3273 10.1021/ct300400x 23341755
    [Google Scholar]
  53. Phillips J.C. Braun R. Wang W. Gumbart J. Tajkhorshid E. Villa E. Chipot C. Skeel R.D. Kalé L. Schulten K. Scalable molecular dynamics with NAMD. J. Comput. Chem. 2005 26 16 1781 1802 10.1002/jcc.20289 16222654
    [Google Scholar]
  54. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  55. Yu W. He X. Vanommeslaeghe K. MacKerell A.D. Jr Extension of the CHARMM general force field to sulfonyl‐containing compounds and its utility in biomolecular simulations. J. Comput. Chem. 2012 33 31 2451 2468 10.1002/jcc.23067 22821581
    [Google Scholar]
  56. Nosé S. Klein M.L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 1983 50 5 1055 1076 10.1080/00268978300102851
    [Google Scholar]
  57. Nosé S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984 52 2 255 268 10.1080/00268978400101201
    [Google Scholar]
  58. Grest G.S. Kremer K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A Gen. Phys. 1986 33 5 3628 3631 10.1103/PhysRevA.33.3628 9897103
    [Google Scholar]
  59. Darden T. York D. Pedersen L. Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J. Chem. Phys. 1993 98 12 10089 10092 10.1063/1.464397
    [Google Scholar]
  60. Essmann U. Perera L. Berkowitz M.L. Darden T. Lee H. Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995 103 19 8577 8593 10.1063/1.470117
    [Google Scholar]
  61. Ryckaert J.P. Ciccotti G. Berendsen H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977 23 3 327 341 10.1016/0021‑9991(77)90098‑5
    [Google Scholar]
  62. Genheden S. Ryde U. Comparison of end‐point continuum‐solvation methods for the calculation of protein–ligand binding free energies. Proteins 2012 80 5 1326 1342 10.1002/prot.24029 22274991
    [Google Scholar]
  63. Wang E. Sun H. Wang J. Wang Z. Liu H. Zhang J.Z.H. Hou T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019 119 16 9478 9508 10.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  64. Bai Q. Tan S. Xu T. Liu H. Huang J. Yao X. MolAICal: a soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief. Bioinform. 2021 22 3 bbaa161 10.1093/bib/bbaa161 32778891
    [Google Scholar]
  65. Tong W. Welsh W.J. Shi L. Fang H. Perkins R. Structure‐activity relationship approaches and applications. Environ. Toxicol. Chem. 2003 22 8 1680 1695 10.1897/01‑198 12924570
    [Google Scholar]
  66. Briem H. Kuntz I.D. Molecular similarity based on DOCK-generated fingerprints. J. Med. Chem. 1996 39 17 3401 3408 10.1021/jm950800y 8765524
    [Google Scholar]
  67. Janela T. Takeuchi K. Bajorath J. Introducing a Chemically Intuitive Core-Substituent Fingerprint Designed to Explore Structural Requirements for Effective Similarity Searching and Machine Learning. Molecules 2022 27 7 2331 10.3390/molecules27072331 35408730
    [Google Scholar]
  68. Maggiora G. Vogt M. Stumpfe D. Bajorath J. Molecular similarity in medicinal chemistry. J. Med. Chem. 2014 57 8 3186 3204 10.1021/jm401411z 24151987
    [Google Scholar]
  69. Bajorath J. Molecular Similarity Concepts for Informatics Applications. Methods Mol. Biol. 2017 1526 231 245 10.1007/978‑1‑4939‑6613‑4_13 27896745
    [Google Scholar]
  70. Kerrigan J.E. Molecular dynamics simulations in drug design. Methods Mol. Biol. 2013 993 95 113 10.1007/978‑1‑62703‑342‑8_7 23568466
    [Google Scholar]
  71. Liu X. Shi D. Zhou S. Liu H. Liu H. Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 2018 13 1 23 37 10.1080/17460441.2018.1403419 29139324
    [Google Scholar]
  72. Wu X. Xu L.Y. Li E.M. Dong G. Application of molecular dynamics simulation in biomedicine. Chem. Biol. Drug Des. 2022 99 5 789 800 10.1111/cbdd.14038 35293126
    [Google Scholar]
  73. Liu P. Lu J. Yu H. Ren N. Lockwood F.E. Wang Q.J. Lubricant shear thinning behavior correlated with variation of radius of gyration via molecular dynamics simulations. J. Chem. Phys. 2017 147 8 084904 10.1063/1.4986552 28863549
    [Google Scholar]
  74. Brice A.R. Dominy B.N. Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. J. Comput. Chem. 2011 32 7 1431 1440 10.1002/jcc.21727 21284003
    [Google Scholar]
  75. Homeyer N. Gohlke H. Free Energy Calculations by the Molecular Mechanics Poisson−Boltzmann Surface Area Method. Mol. Inform. 2012 31 2 114 122 10.1002/minf.201100135 27476956
    [Google Scholar]
/content/journals/mc/10.2174/0115734064318640241112071225
Loading
/content/journals/mc/10.2174/0115734064318640241112071225
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test