Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1573-4064
  • E-ISSN:

Abstract

The most common heterocyclic aromatic molecule with potential uses in industry and medicine is quinoline. Its chemical formula is CHN, and it has a distinctive double-ring structure with a pyridine moiety fused with a benzene ring. Various synthetic approaches synthesize quinoline derivatives. These approaches include solvent-free synthetic approach, mechanochemistry, ultrasonic, photolytic synthetic approach, and microwave and catalytic synthetic approaches. One of the important synthetic approaches is a catalyst-based synthetic approach in which different catalysts are used such as silver-based catalysts, titanium-based nanoparticle catalysts, new iridium catalysts, barium-based catalysts, iron-based catalysts, gold-based catalysts, nickel-based catalyst, some metal-based photocatalyst, α-amylase biocatalyst, by using multifunctional metal-organic framework-metal nanoparticle tandem catalyst . In the present study, we summarized different catalyst-promoted reactions that have been reported for the synthesis of quinoline. Hopefully, the study will be helpful for the researchers.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064315729240610045009
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. MatadaB.S. YernaleN.G. The contemporary synthetic recipes to access versatile quinoline heterocycles.Synth. Commun.202151811810.1080/00397911.2021.1876240
    [Google Scholar]
  2. AmitC. PayalC. KuldeepK. MansimranS. PoonamS. A review: Chemistry of antimicrobial and anticancer quinolines.Can. Open Pharm. J.20141112
    [Google Scholar]
  3. ShafferiyasudheenR. SagadevanK. Detection of quinoline liquid using photonic crystal fiber sensor.Int. Conf. Syst. Computat. Automat. Network202320235110.1109/ICSCAN58655.2023.10394953
    [Google Scholar]
  4. ChawleyP. SumanA.K. JagadevanS. Occurrence of quinoline in the environment and its advanced treatment technologies. Persistent Pollutants in Water and Advanced Treatment Technology.Berlin, GermanySpringer202310.1007/978‑981‑99‑2062‑4_9
    [Google Scholar]
  5. JainS. ChandraV. Kumar JainP. PathakK. PathakD. VaidyaA. Comprehensive review on current developments of quinoline-based anticancer agents.Arab. J. Chem.20191284920494610.1016/j.arabjc.2016.10.009
    [Google Scholar]
  6. KouznetsovV. MéndezL. GómezC. Recent progress in the synthesis of quinolines.Curr. Org. Chem.20059214116110.2174/1385272053369196
    [Google Scholar]
  7. VermaC. QuraishiM.A. EbensoE.E. Quinoline and its derivatives as corrosion inhibitors: A review.Surf. Interfaces20202110063410.1016/j.surfin.2020.100634
    [Google Scholar]
  8. ShahabiD. TavakolH. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst.J. Mol. Liq.201622032432810.1016/j.molliq.2016.04.094
    [Google Scholar]
  9. OlatejuO.A. BabalolaC.P. OlubiyiO.O. KotilaO.A. KwasiD.A. OaikhenaA.O. OkekeI.N. Quinoline antimalarials increase the antibacterial activity of ampicillin.Front. Microbiol.20211255655010.3389/fmicb.2021.556550 34149629
    [Google Scholar]
  10. DuparcS. ChalonS. MillerS. RichardsonN. TooveyS. Neurological and psychiatric safety of tafenoquine in Plasmodium vivax relapse prevention: A review.Malar. J.202019111110.1186/s12936‑020‑03184‑x 32169086
    [Google Scholar]
  11. DasR.R. JaiswalN. DevN. JaiswalN. NaikS.S. SankarJ. Efficacy and safety of anti-malarial drugs (chloroquine and hydroxy-chloroquine) in treatment of COVID-19 infection: A systematic review and meta-analysis.Front. Med. (Lausanne)2020748210.3389/fmed.2020.00482 32850924
    [Google Scholar]
  12. WeyesaA. MulugetaE. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review.RSC Advances20201035207842079310.1039/D0RA03763J 35517753
    [Google Scholar]
  13. DesaiU.V. MitragotriS.D. ThopateT.S. PoreD.M. WadgaonkarP.P. A highly efficient synthesis of trisubstituted quinolines using sodium hydrogensulfate on silica gel as a reusable catalyst.ARKIVOC200615204198
    [Google Scholar]
  14. EbensoE.E. KabandaM.M. ArslanT. SaracogluM. KandemirliF. MurulanaL.C. SinghA.K. ShuklaS.K. HammoutiB. KhaledK.F. QuraishiM.A. ObotI.B. EddyN.O. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium.Int. J. Electrochem. Sci.2012765643567610.1016/S1452‑3981(23)19650‑7
    [Google Scholar]
  15. O’LoughlinE.J. KehrmeyerS.R. SimsG.K. Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium.Int. Biodeterior. Biodegradation199638210711810.1016/S0964‑8305(96)00032‑7
    [Google Scholar]
  16. PatelA. PatelS. MehtaM. PatelY. PatelR. ShahD. PatelD. ShahU. PatelM. PatelS. SolankiN. A review on synthetic investigation for quinoline-recent green approaches.Green Chem. Lett. Rev.202215233637110.1080/17518253.2022.2064194
    [Google Scholar]
  17. SkraupZ.H. Synthetische versuche in der chinolinreihe.Monatshefte für Chemie und verwandte Teile anderer Wissenschaften188213990
    [Google Scholar]
  18. RamannG.A. CowenB.J. Quinoline synthesis by improved Skraup–Doebner–Von Miller reactions utilizing acrolein diethyl acetal.Tetrahedron Lett.201556466436643910.1016/j.tetlet.2015.09.145
    [Google Scholar]
  19. Fallah-MehrjardiM. Friedlander Synthesis of poly-substituted quinolines: A mini review.Mini Rev. Org. Chem.201714318719610.2174/1570193X14666170206124809
    [Google Scholar]
  20. RamannG. CowenB. Recent advances in metal-free quinoline synthesis.Molecules201621898610.3390/molecules21080986 27483222
    [Google Scholar]
  21. ElghamryI. Al-FaiyzY. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water.Tetrahedron Lett.201657111011210.1016/j.tetlet.2015.11.070
    [Google Scholar]
  22. TsoungJ. BogdanA.R. KantorS. WangY. CharaschanyaM. DjuricS.W. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure flow reactor.J. Org. Chem.20178221073108410.1021/acs.joc.6b02520 28001397
    [Google Scholar]
  23. ChengC.C. YanS.J. The Friedländer synthesis of quinolines.Org. React.2004283720110.1002/0471264180.or028.02
    [Google Scholar]
  24. MartinezR. RamonD.J. YusM. Transition-metal-free indirect friedlander synthesis of quinolines from alcohols.J. Org. Chem.200873249778978010.1021/jo801678n
    [Google Scholar]
  25. ChoC.S. RenW.X. A recyclable palladium-catalyzed modified Friedländer quinoline synthesis.J. Organomet. Chem.2007692194182418610.1016/j.jorganchem.2007.06.022
    [Google Scholar]
  26. Vander MierdeH. Van Der VoortP. De VosD. VerpoortF. A ruthenium‐catalyzed approach to the Friedländer Quinoline Synthesis.Eur. J. Org. Chem.2008200891625163110.1002/ejoc.200701001
    [Google Scholar]
  27. ChoC.S. RenW.X. YoonN.S. A recyclable copper catalysis in modified Friedländer quinoline synthesis.J. Mol. Catal. Chem.20092991-211712010.1016/j.molcata.2008.10.024
    [Google Scholar]
  28. ChenB.W.J. ChngL.L. YangJ. WeiY. YangJ. YingJ.Y. Palladium‐based nanocatalyst for one‐pot synthesis of polysubstituted quinolines.ChemCatChem20135127728310.1002/cctc.201200496
    [Google Scholar]
  29. XuX. ZhangX. LiuW. ZhaoQ. WangZ. YuL. ShiF. Synthesis of 2-substituted quinolines from alcohols.Tetrahedron Lett.201556243790379210.1016/j.tetlet.2015.04.070
    [Google Scholar]
  30. XieL.Y. PengS. JiangL.L. PengX. XiaW. YuX. WangX.X. CaoZ. HeW.M. AgBF 4 -catalyzed deoxygenative C2-amination of quinoline N -oxides with isothiocyanates.Org. Chem. Front.20196216717110.1039/C8QO01128A
    [Google Scholar]
  31. KumarR. KumarI. SharmaR. SharmaU. Catalyst and solvent-free alkylation of quinoline N-oxides with olefins: A direct access to quinoline-substituted α-hydroxy carboxylic derivatives.Org. Biomol. Chem.20161492613261710.1039/C5OB02600H 26846299
    [Google Scholar]
  32. AnY. ZhengD. WuJ. An unexpected copper(II)-catalyzed three-component reaction of quinazoline 3-oxide, alkylidenecyclopropane, and water.Chem. Commun. (Camb.)201450659165916710.1039/C4CC04341C 24988940
    [Google Scholar]
  33. AgasarM. PatilM.R. KeriR.S. Titanium-based nanoparticles: A novel, facile and efficient catalytic system for one-pot synthesis of quinoline derivatives.Chem. Data Collections201817-1817818610.1016/j.cdc.2018.08.001
    [Google Scholar]
  34. KalaK. GuptaS. BhatV.T. SasidharanM. SelvamP. MaliniT.P. TiO2 (P25) nanoparticle catalyzed C-alkylation and quinoline synthesis via the borrowing hydrogen method.New J. Chem.202347188751875810.1039/D3NJ00460K
    [Google Scholar]
  35. MajumderS. GipsonK.R. OdomA.L. A multicomponent coupling sequence for direct access to substituted quinolines.Org. Lett.200911204720472310.1021/ol901855b 19754043
    [Google Scholar]
  36. RuchS. IrrgangT. KempeR. New iridium catalysts for the selective alkylation of amines by alcohols under mild conditions and for the synthesis of quinolines by acceptor-less dehydrogenative condensation.Chemistry20142041132791328510.1002/chem.201402952 25186522
    [Google Scholar]
  37. ShuiH. ZhongY. LuoN. LuoR. OuyangL. Iridium-catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with amides or nitriles to synthesize quinazolines.Synthesis202254122876288410.1055/a‑1755‑4700
    [Google Scholar]
  38. HeY.M. FanQ.H. Advances in transfer hydrogenation of carbonyl compounds in water.ChemCatChem20157339840010.1002/cctc.201402883
    [Google Scholar]
  39. YangZ. ZhuZ. LuoR. QiuX. LiuJ. YangJ.K. TangW. Iridium-catalyzed highly efficient chemoselective reduction of aldehydes in water using formic acid as the hydrogen source.Green Chem.201719143296330110.1039/C7GC01289F
    [Google Scholar]
  40. KühlO. PalmG. Imidazolium salts from amino acids—a new route to chiral zwitterionic carbene precursors?Tetrahedron Asymmetry201021439339710.1016/j.tetasy.2010.02.015
    [Google Scholar]
  41. Albert-SorianoM. TrilloP. SolerT. PastorI.M. Versatile barium and calcium imidazolium‐dicarboxylate heterogeneous catalysts in quinoline synthesis.Eur. J. Org. Chem.20172017436375638110.1002/ejoc.201700990
    [Google Scholar]
  42. TrilloP. PastorI.M. Iron‐based imidazolium salts as versatile catalysts for the synthesis of quinolines and 2‐ and 4‐allylanilines by allylic substitution of alcohols.Adv. Synth. Catal.2016358182929293910.1002/adsc.201600315
    [Google Scholar]
  43. KoN.H. LeeJ.S. HuhE.S. LeeH. JungK.D. KimH.S. CheongM. Extractive desulfurization using Fe-containing ionic liquids.Energy Fuels20082231687169010.1021/ef7007369
    [Google Scholar]
  44. LiH. ZhuW. WangY. ZhangJ. LuJ. YanY. Deep oxidative desulfurization of fuels in redox ionic liquids based on iron chloride.Green Chem.200911681081510.1039/b901127g
    [Google Scholar]
  45. JanaU. BiswasS. MaitiS. Iron(III)‐catalyzed addition of benzylic alcohols to aryl alkynes – a new synthesis of substituted aryl ketones.Eur. J. Org. Chem.20082008345798580410.1002/ejoc.200800713
    [Google Scholar]
  46. RuepingM. NachtsheimB.J. A review of new developments in the Friedel–Crafts alkylation – From green chemistry to asymmetric catalysis.Beilstein J. Org. Chem.201061610.3762/bjoc.6.6 20485588
    [Google Scholar]
  47. CaoK. ZhangF.M. TuY.Q. ZhuoX.T. FanC.A. Iron(III)-catalyzed and air-mediated tandem reaction of aldehydes, alkynes and amines: An efficient approach to substituted quinolines.Chemistry200915266332633410.1002/chem.200900875 19472236
    [Google Scholar]
  48. BanjareS.K. LeifertD. WeidlichF. DaniliucC.G. AlasmaryF.A. StuderA. Access to polyheterocyclic compounds through Iron(II)-mediated radical cascade cyclization utilizing 2-ethynylbenzaldehydes and aryl isonitriles.Org. Lett.202325346424642810.1021/acs.orglett.3c02448 37610878
    [Google Scholar]
  49. LuJ. BaiY. WangZ. YangB. LiW. Ferric chloride hexahydrate: A convenient reagent for the oxidation of hantzsch 1, 4-dihydropyridines.Synth. Commun.200131172625263010.1081/SCC‑100105388
    [Google Scholar]
  50. LuJ. Iron (III)-catalyzed synthesis of dihydropyrimidinones. Improved conditions for the Biginelli reaction.Synlett200020001636410.1055/s‑2000‑6469
    [Google Scholar]
  51. MahajanS. SharmaB. KapoorK.K. A solvent-free one step conversion of ketones to amides via Beckmann rearrangement catalysed by FeCl3·6H2O in presence of hydroxylamine hydrochloride.Tetrahedron Lett.201556141915191810.1016/j.tetlet.2015.02.110
    [Google Scholar]
  52. TasqeeruddinS. AsiriY.I. ShaheenS. An environmentally benign, simple and proficient synthesis of quinoline derivatives catalyzed by FeCl3.6H2O as a green and readily available catalyst.Green Chem. Lett. Rev.202114111912710.1080/17518253.2020.1869840
    [Google Scholar]
  53. SheeS. GanguliK. JanaK. KunduS. Cobalt complex catalyzed atom-economical synthesis of quinoxaline, quinoline and 2-alkylaminoquinoline derivatives.Chem. Commun. (Camb.)201854506883688610.1039/C8CC02366B 29790492
    [Google Scholar]
  54. SinghA. MajiA. JoshiM. ChoudhuryA.R. GhoshK. Designed pincer ligand supported Co(II)-based catalysts for dehydrogenative activation of alcohols: Studies on N -alkylation of amines, α-alkylation of ketones and synthesis of quinolines.Dalton Trans.202150248567858710.1039/D0DT03748F 34075925
    [Google Scholar]
  55. XiaoF. ChenY. LiuY. WangJ. Sequential catalytic process: Synthesis of quinoline derivatives by AuCl3/CuBr-catalyzed three-component reaction of aldehydes, amines, and alkynes.Tetrahedron200864122755276110.1016/j.tet.2008.01.046
    [Google Scholar]
  56. BainsA.K. SinghV. AdhikariD. Homogeneous nickel-catalyzed sustainable synthesis of quinoline and quinoxaline under aerobic conditions.J. Org. Chem.20208523149711497910.1021/acs.joc.0c01819 33174416
    [Google Scholar]
  57. DasS. MaitiD. De SarkarS. Synthesis of polysubstituted quinolines from α-2-aminoaryl alcohols via nickel-catalyzed dehydrogenative coupling.J. Org. Chem.20188342309231610.1021/acs.joc.7b03198 29345932
    [Google Scholar]
  58. ParuaS. SikariR. SinhaS. DasS. ChakrabortyG. PaulN.D. A nickel catalyzed acceptorless dehydrogenative approach to quinolines.Org. Biomol. Chem.201816227428410.1039/C7OB02670F 29242865
    [Google Scholar]
  59. BainsA.K. KunduA. YadavS. AdhikariD. Borrowing hydrogen-mediated N-alkylation reactions by a well-defined homogeneous nickel catalyst.ACS Catal.20199109051905910.1021/acscatal.9b02977
    [Google Scholar]
  60. MotokuraK. Mg–Al hydrotalcite-based catalysts for one-pot synthesis of quinoline derivatives.Tetrahedron Green Chem2023110000410.1016/j.tgchem.2023.100004
    [Google Scholar]
  61. KanedaK. EbitaniK. MizugakiT. MoriK. Design of high-performance heterogeneous metal catalysts for green and sustainable chemistry.Bull. Chem. Soc. Jpn.2006797981101610.1246/bcsj.79.981
    [Google Scholar]
  62. SahaN. PatelK.I. MaulikA. ChakrabortiA.K. Aqueous-mediated synthesis.Bioactive Heterocycles.202419218310.1515/9783110985627
    [Google Scholar]
  63. SinghS. ChoudhuryA.R. GhoshK. Facile synthesis of quinolines and N-alkylation reactions catalyzed by ruthenium(II) pincer type complexes: Reaction mechanism and evidences for ruthenium hydride intermediate.Mol. Catal.202354911342410.1016/j.mcat.2023.113424
    [Google Scholar]
  64. HarikrishnaS. RobertA.R. GanjaH. MaddilaS. JonnalagaddaS.B. A green, facile and recyclable Mn3O4/MWCNT nano-catalyst for the synthesis of quinolinesvia one-pot multicomponent reactions.Sustain. Chem. Pharm.20201610026510.1016/j.scp.2020.100265
    [Google Scholar]
  65. TeegardinK. DayJ.I. ChanJ. Advances in photocatalysis: A microreview of visible light mediated ruthenium and iridium catalyzed organic transformations.Org. Proc. Res. Dev.20162071156116310.1021/acs.oprd.6b00101
    [Google Scholar]
  66. AnX.D. YuS. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine.Org. Lett.201517112692269510.1021/acs.orglett.5b01096 25964987
    [Google Scholar]
  67. WangQ. HuangJ. ZhouL. Synthesis of quinolines by visible‐light induced radical reaction of vinyl azides and α‐carbonyl benzyl bromides.Adv. Synth. Catal.2015357112479248410.1002/adsc.201500141
    [Google Scholar]
  68. YuanY. DongW. GaoX. GaoH. XieX. ZhangZ. Visible-light-induced radical cascade cyclization: Synthesis of the ABCD ring cores of camptothecins.J. Org. Chem.20188352840284610.1021/acs.joc.7b03283 29411608
    [Google Scholar]
  69. HennesseyS. González-GómezR. McCarthyK. BurkeC.S. Le HouérouC. SarangiN.K. McArdleP. KeyesT.E. CucinottaF. FarràsP. Enhanced photostability and photoactivity of ruthenium polypyridyl-based photocatalysts by covalently anchoring onto reduced graphene oxide.ACS Omega2024912138721388210.1021/acsomega.3c08800 38559923
    [Google Scholar]
  70. HarikrishnaS. GanguK.K. RobertA.R. GanjaH. KerruN. MaddilaS. JonnalagaddaS.B. An ecofriendly and reusable catalyst RuO2/MWCNT in the green synthesis of sulfonyl-quinolines.Process Saf. Environ. Prot.202215991191710.1016/j.psep.2022.01.054
    [Google Scholar]
  71. MandalS. BhuyanS. JanaS. HossainJ. ChhetriK. RoyB.G. Efficient visible light mediated synthesis of quinolin-2(1 H)-ones from quinoline N -oxides.Green Chem.202123145049505510.1039/D1GC01460A
    [Google Scholar]
  72. WangS.J. WangZ. TangY. ChenJ. ZhouL. Asymmetric synthesis of quinoline-naphthalene atropisomers by central-to-axial chirality conversion.Org. Lett.202022228894889810.1021/acs.orglett.0c03285 33124830
    [Google Scholar]
  73. GuoQ.S. DuD.M. XuJ. The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines.Angew. Chem. Int. Ed.200847475976210.1002/anie.200703925 18181258
    [Google Scholar]
  74. Godino-OjerM. Morales-TorresS. Pérez-MayoralE. Maldonado-HódarF.J. Enhanced catalytic performance of ZnO/carbon materials in the green synthesis of poly-substituted quinolines.J. Environ. Chem. Eng.202210110687910.1016/j.jece.2021.106879
    [Google Scholar]
  75. GhouseS. SreenivasuluC. KishoreD.R. SatyanarayanaG. Recent developments by zinc based reagents/catalysts promoted organic transformations.Tetrahedron202210513258010.1016/j.tet.2021.132580
    [Google Scholar]
  76. AmetaC. VyasY. ChaubisaP. AmetK.L. Synthesis of Quinolines, Isoquinolines, and Quinolones Using Various Nanocatalysts. InNanocatalysis.Boca Raton, FloridaCRC Press2022147176
    [Google Scholar]
  77. VettukattilU. GovindanA. YousufN. AlexS. KrishnapillaiS. Synthesis of quinoline and polyhydroquinoline derivatives using phloroglucinol cored amino functionalized dendritic polymer as catalyst.ChemistrySelect2022727e20220125010.1002/slct.202201250
    [Google Scholar]
  78. PatelD.B. RajaniD.P. RajaniS.D. PatelH.D. A green synthesis of quinoline‐4‐carboxylic derivatives using p ‐toluenesulfonic acid as an efficient organocatalyst under microwave irradiation and their docking, molecular dynamics, ADME‐Tox and biological evaluation.J. Heterocycl. Chem.20205741524154410.1002/jhet.3848
    [Google Scholar]
  79. KhalighN.G. MihankhahT. JohanM.R. Synthesis of quinoline derivatives via the Friedländer annulation using a sulfonic acid functionalized liquid acid as dual solvent-catalyst.Polycycl. Aromat. Compd.20204041223123710.1080/10406638.2018.1538058
    [Google Scholar]
  80. LiL.H. NiuZ.J. LiangY.M. Organocatalyzed synthesis of functionalized quinolines.Chem. Asian J.202015223124110.1002/asia.201901380 31799792
    [Google Scholar]
  81. BabaeiP. Safaei-GhomiJ. Engineered N-doped graphene quantum dots/CoFe2O4 spherical composites as a robust and retrievable catalyst: Fabrication, characterization, and catalytic performance investigation in microwave-assisted synthesis of quinoline-3-carbonitrile derivatives.RSC Advances20211155347243473410.1039/D1RA05739A 35494730
    [Google Scholar]
  82. NaghshbandiZ. ArsalaniN. ZakerhamidiM.S. GeckelerK.E. A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M = Ni, Co) nanocomposites for catalytic application.Appl. Surf. Sci.201844348449110.1016/j.apsusc.2018.02.283
    [Google Scholar]
  83. WeiX. LiY. PengH. GaoD. OuY. YangY. HuJ. ZhangY. XiaoP. A novel functional material of Co3O4/Fe2O3 nanocubes derived from a MOF precursor for high-performance electrochemical energy storage and conversion application.Chem. Eng. J.201935533634010.1016/j.cej.2018.08.009
    [Google Scholar]
  84. BarmanM.K. JanaA. MajiB. Phosphine‐free NNN‐manganese complex catalyzed α‐alkylation of ketones with primary alcohols and Friedländer Quinoline Synthesis.Adv. Synth. Catal.2018360173233323810.1002/adsc.201800380
    [Google Scholar]
  85. DasK. MondalA. SrimaniD. Phosphine free Mn-complex catalysed dehydrogenative C–C and C–heteroatom bond formation: A sustainable approach to synthesize quinoxaline, pyrazine, benzothiazole and quinoline derivatives.Chem. Commun. (Camb.)20185475105821058510.1039/C8CC05877F 30167623
    [Google Scholar]
  86. ChaiH. TanW. LuY. ZhangG. MaJ. Sustainable synthesis of quinolines (pyridines) catalyzed by a cheap metal Mn(I)‐NN complex catalyst.Appl. Organomet. Chem.2020348e568510.1002/aoc.5685
    [Google Scholar]
  87. HeT. ZengQ.Q. YangD.C. HeY.H. GuanZ. Biocatalytic one-pot three-component synthesis of 3,3′-disubstituted oxindoles and spirooxindole pyrans using α-amylase from hog pancreas.RSC Advances2015547378433785210.1039/C4RA16825A
    [Google Scholar]
  88. HuangQ. ZhaoM. YangY. NiuY.N. XiaX.F. Visible-light-induced and copper-catalyzed oxidative cyclization of substituted o -aminophenylacetylene for the synthesis of quinoline and indole derivatives.Org. Chem. Front.20218215988599310.1039/D1QO00914A
    [Google Scholar]
  89. SharmaR.K. DuttaS. SharmaS. Quinoline-2-carboimine copper complex immobilized on amine functionalized silica coated magnetite nanoparticles: A novel and magnetically retrievable catalyst for the synthesis of carbamates via C–H activation of formamides.Dalton Trans.20154431303131610.1039/C4DT03236E 25417959
    [Google Scholar]
  90. ReddyA.C.S. AnbarasanP. Copper catalyzed oxidative coupling of ortho-vinylanilines with N-tosylhydrazones: Efficient synthesis of polysubstituted quinoline derivatives.J. Catal.201836310210810.1016/j.jcat.2018.04.005
    [Google Scholar]
  91. ChenJ. ZhangB. QiL. PeiY. NieR. HeintzP. LuanX. BaoZ. YangQ. RenQ. ZhangZ. HuangW. Facile fabrication of hierarchical MOF–Metal nanoparticle tandem catalysts for the synthesis of bioactive molecules.ACS Appl. Mater. Interfaces20201220230022300910.1021/acsami.0c05344 32338862
    [Google Scholar]
  92. FurukawaH. CordovaK.E. O’KeeffeM. YaghiO.M. The chemistry and applications of metal-organic frameworks.Science20133416149123044410.1126/science.1230444 23990564
    [Google Scholar]
  93. HuangY.B. LiangJ. WangX.S. CaoR. Multifunctional metal–organic framework catalysts: Synergistic catalysis and tandem reactions.Chem. Soc. Rev.201746112615710.1039/C6CS00250A 27841411
    [Google Scholar]
  94. LiuD. WanJ. PangG. TangZ. Hollow metal–organic‐framework micro/nanostructures and their derivatives: Emerging multifunctional materials.Adv. Mater.20193138180329110.1002/adma.201803291 30548351
    [Google Scholar]
  95. YuanK. SongT. WangD. ZhangX. GaoX. ZouY. DongH. TangZ. HuW. Effective and selective catalysts for cinnamaldehyde hydrogenation: Hydrophobic hybrids of metal–organic frameworks, metal nanoparticles, and micro‐ and mesoporous polymers.Angew. Chem. Int. Ed.201857205708571310.1002/anie.201801289 29509302
    [Google Scholar]
  96. ZhaoM. YuanK. WangY. LiG. GuoJ. GuL. HuW. ZhaoH. TangZ. Metal–organic frameworks as selectivity regulators for hydrogenation reactions.Nature20165397627768010.1038/nature19763 27706142
    [Google Scholar]
  97. ZhaoM. DengK. HeL. LiuY. LiG. ZhaoH. TangZ. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions.J. Am. Chem. Soc.201413651738174110.1021/ja411468e 24437922
    [Google Scholar]
  98. DasA. AnbuN. VaralakshmiP. DhakshinamoorthyA. BiswasS. A hydrazine functionalized UiO-66(Hf) metal–organic framework for the synthesis of quinolines via Friedländer condensation.New J. Chem.20204426109821098810.1039/D0NJ01891K
    [Google Scholar]
  99. GhoshS. BiswasS. A functionalized UiO-66 metal-organic framework acting as a fluorescent based selective sensor of hydrazine in aqueous medium.Microporous Mesoporous Mater.202232911155210.1016/j.micromeso.2021.111552
    [Google Scholar]
  100. DhakshinamoorthyA. Santiago-PortilloA. AsiriA.M. GarciaH. Engineering UiO‐66 metal organic framework for heterogeneous catalysis.ChemCatChem201911389992310.1002/cctc.201801452
    [Google Scholar]
/content/journals/mc/10.2174/0115734064315729240610045009
Loading
/content/journals/mc/10.2174/0115734064315729240610045009
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test