Skip to content
2000
Volume 16, Issue 5
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The mechanism of addition of nucleophiles to the π-acid complexed alkynes has been studied successfully by the assessment of energy of intermediates and activation parameters. To elucidate the origin of stereoselectivity and predict the reaction pathways, the geometry optimizations of reactants, products, intermediates and transition states, were calculated by using density functional theory (DFT) at the B3LYP/6-31+G(d) method. The reaction mechanism of hydration of alkynes in the catalyzed synthesis of bis-spiroketal by DFT calculations is explored. The pyranyl enol ether was formed regioselectively by the first ring closure. Further, bis-enol ether was formed by second 6-exodig addition. Then, dehydration, followed by dehydrative ring closure finally gave bis-spiroketal product. It is concluded that one of the most feasible reaction pathways comprises pyranyl enol ether and bis-enol ether formation as intermediates. The final cyclization step of product formation is endothermic. In terms of stereochemistry, the trans-product is found to be energetically more stable than cisproduct and hence supports the electivity of the reaction.

Loading

Article metrics loading...

/content/journals/loc/10.2174/1570178616666181130164235
2019-05-01
2025-06-30
Loading full text...

Full text loading...

/content/journals/loc/10.2174/1570178616666181130164235
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test