Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

The synthesis of α,β-unsaturated compounds is crucial in organic chemistry, especially in drug discovery and pharmaceutical development. In this study, NCP@POCl-x (FeO@SiO@chitosan@POCl-x) has been introduced as a new, environmentally friendly, and highly efficient heterogeneous magnetic nanocatalyst for the synthesis of α,β-unsaturated carboxylic acids. This catalyst facilitates the transformation of POCl-x to PO(OH) in the presence of water, effectively converting β-hydroxy nitriles into α,β-unsaturated carboxylic acids through a specific mechanism involving water and heat. The reactions display notable regioselectivity, leading to high-purity products and quantitative yields. NCP@PO(OH) exhibits heterogeneity, magnetic properties, straightforward recovery, and outstanding performance, making it a valuable catalyst for efficient and selective transformations of β-hydroxy nitriles. Additionally, it can be easily separated from the mixture of reactions using external magnetic forces.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786307956240522081438
2024-05-29
2025-07-09
Loading full text...

Full text loading...

References

  1. (a PatraS. ValsamidouV. KatayevD. Chimia (Aarau)2024781/2323910.2533/chimia.2024.3238430061
    [Google Scholar]
  2. (b SmorodinaA.A. BuevE.M. MoshkinV.S. SosnovskikhV.Y. Tetrahedron Lett.202413515490610.1016/j.tetlet.2023.154906
    [Google Scholar]
  3. (c ShanY. ZhangX. LiuG. LiJ. LiuY. WangJ. ChenD. Chem. Commun.202410.1039/D3CC05880H
    [Google Scholar]
  4. (d KieslichD. ChristoffersJ. Synthesis2021533485349610.1055/a‑1499‑8943
    [Google Scholar]
  5. (e JuhlM. PetersenA.R. LeeJ.W. Chemistry202127122823210.1002/chem.20200362332812672
    [Google Scholar]
  6. (a MalikM.S. AsgharB.H. AzeezaS. ObaidR.J. ThagafiI.I. JassasR.S. AltassH.M. MoradM. MoussaZ. AhmedS.A. Arab. J. Chem.2020138200820810.1016/j.arabjc.2020.09.053
    [Google Scholar]
  7. (b ScottiC. BarlowJ. W. Nat. Prod. Rep.2022171934578X22109997310.1177/1934578X221099973
    [Google Scholar]
  8. (c ElenkovM.M. HauerB. JanssenD.B. Advanced Synthesis & Catalysis200634857958510.1002/adsc.200505333
    [Google Scholar]
  9. (d LiuM. LiS. Nat. Prod. Rep.202410.1039/D3NP00028A
    [Google Scholar]
  10. (a ZhangS.L. DengZ.Q. Org. Biomol. Chem.201614307282729410.1039/C6OB01198E27397647
    [Google Scholar]
  11. (b FalciniC. GonzaloG. Catalysts202414212010.3390/catal14020120
    [Google Scholar]
  12. WangM.X. WuY. Org. Biomol. Chem.20031353554010.1039/b209791e12926256
    [Google Scholar]
  13. RothS. NieseR. MüllerM. HallM. Angew. Chem. Int. Ed.2024e20231474010.1002/anie.202314740
    [Google Scholar]
  14. KissL. FülöpF. Chem. Rev.201411421116116910.1021/cr300454h24299148
    [Google Scholar]
  15. (a GuptaP. MahajanN. Chemistry of Biologically Potent Natural Products and Synthetic Compounds20219313110.1002/9781119640929.ch4
    [Google Scholar]
  16. (b SrinivasB. KumarV.P. SridharR. SurendraK. NageswarY.V.D. RaoK.R. J. Mol. Catal. Chem.200726111510.1016/j.molcata.2006.07.040
    [Google Scholar]
  17. (c NowillR.W. PatelT.J. BeasleyD.L. AlvarezJ.A. JacksonE.III HizerT.J. GhivirigaI. MateerS.C. FeskeB.D. Tetrahedron Lett.201152192440244210.1016/j.tetlet.2011.03.009
    [Google Scholar]
  18. (d GuoB. ZijlstraD.S. de VriesJ.G. OttenE. ChemCatChem201810132868287210.1002/cctc.20180050930263082
    [Google Scholar]
  19. (e EbrahimzadehF. BaramakehL. ChemistrySelect2024910e20230252410.1002/slct.202302524
    [Google Scholar]
  20. TianJ. YamagiwaN. MatsunagaS. ShibasakiM. Org. Lett.20035173021302410.1021/ol034944f12916971
    [Google Scholar]
  21. (a DomingoL.R. PérezP. Ríos-GutiérrezM. AurellM.J. Tetrahedron Chem202410006410.1016/j.tchem.2024.100064
    [Google Scholar]
  22. (b KhatikG.L. KumarR. ChakrabortiA.K. Org. Lett.20068112433243610.1021/ol060846t16706544
    [Google Scholar]
  23. (c ShaoP. WangS. DuG. XiC. RSC Advances2017763534353910.1039/C6RA25003C
    [Google Scholar]
  24. (d ZhangS. NeumannH. BellerM. Chem. Soc. Rev.202049103187321010.1039/C9CS00615J32255444
    [Google Scholar]
  25. (e LiuW. PuM. HeJ. ZhangT. DongS. LiuX. WuY.D. FengX. J. Am. Chem. Soc.202114330118561186310.1021/jacs.1c0588134296601
    [Google Scholar]
  26. (f ChenH. LiuL. HuangT. ChenJ. ChenT. Adv. Synth. Catal.2020362163332334610.1002/adsc.202000454
    [Google Scholar]
  27. (a MulderT. BobbaS. JohnsonK. GrandnerJ.M. WangW. ZhangC. CaiJ. ChooE.F. KhojastehS.C. ZhangD. Drug Metab. Dispos.202048981982910.1124/dmd.120.00009632616543
    [Google Scholar]
  28. (b DuX. XiaoY. HuangJ.M. ZhangY. DuanY.N. WangH. ShiC. ChenG.Q. ZhangX. Nat. Commun.2020111323910.1038/s41467‑020‑17057‑z32591536
    [Google Scholar]
  29. (c WangS.S. ZhangQ.L. ChuP. KongL.Q. LiG.Z. LiY.Q. YangL. ZhaoW.J. GuoX.H. TangZ.Y. Bioorg. Chem.202010110403610.1016/j.bioorg.2020.10403632629283
    [Google Scholar]
  30. (d EgbujorM.C. ButtariB. ProfumoE. Telkoparan-AkillilarP. SasoL. Int. J. Mol. Sci.20222315846610.3390/ijms2315846635955599
    [Google Scholar]
  31. (e ZhaoW. MoM. YuJ. ChengS. LongG. LuoZ. LiangW. YanC. LuoH. SunB. 202310.1007/s12032‑024‑02324‑6
  32. (a Farrar-TobarR.A. Dell’AcquaA. TinS. de VriesJ.G. Green Chem.202022113323335710.1039/D0GC00855A
    [Google Scholar]
  33. (b AlekuG.A. RobertsG.W. LeysD. Green Chem.202022123927393910.1039/D0GC00867B
    [Google Scholar]
  34. (c NiwaT. OchiaiH. IsodaM. HosoyaT. Chem. Lett.20174691315131810.1246/cl.170549
    [Google Scholar]
  35. MobinikhalediA. ForoughifarN. JirandehiH.F. Synth. React. Inorg. Met.-Org. Nano-Met. Chem.200838542843010.1080/15533170802254602
    [Google Scholar]
  36. NomuraE. HosodaA. MoriH. TaniguchiH. Green Chem.200571286386610.1039/b510626e
    [Google Scholar]
  37. (a AhmadM.S. PulidindiI.N. LiC. New J. Chem.20204440171771719710.1039/D0NJ01996H
    [Google Scholar]
  38. (b El-SeediH.R. TaherE.A. SheikhB.Y. AnjumS. SaeedA. AlAjmiM.F. MoustafaM.S. Al-MousawiS.M. FaragM.A. HegazyM-E.F. KhalifaS.A.M. GöranssonU. Studies in Natural Products Chemistry; Atta ur Rehman, Ed.; Elsevier20185526929210.1016/B978‑0‑444‑64068‑0.00008‑5
    [Google Scholar]
  39. MunS. LeeJ.E. Yun.J. Org. Lett.20068214887488910.1021/ol061955a17020328
    [Google Scholar]
  40. KamilaS. ZhuD. BiehlE.R. HuaL. Org. Lett.20068204429443110.1021/ol061542+16986917
    [Google Scholar]
  41. CoadyT.M. CoffeyL.V. O’ReillyC. OwensE.B. LennonC.M. J. Mol. Catal., B Enzym.20139715015510.1016/j.molcatb.2013.08.001
    [Google Scholar]
  42. ChidambaramA. SundararajuK. ChidambaramR.K. SubbiahR. JayarajJ.M. MuthusamyK. VilwanathanR. J. Cell. Physiol.201823375293530910.1002/jcp.2633329215703
    [Google Scholar]
  43. (a EbrahimzadehF. JamalainA. ZareeS. Phosphorus Sulfur Silicon Relat. Elem.2024199216917710.1080/10426507.2023.2279614
    [Google Scholar]
  44. (b EbrahimzadehF. Journal of Chemical Reactivity and Synthesis202313240254https://doi.org/20.1001.1.27834107.2023.13.3.4.1
    [Google Scholar]
  45. (c EbrahimzadehF. International Research Journal of Modernization in Engineering Technology and Science202352640264610.56726/IRJMETS45483
    [Google Scholar]
  46. (d EbrahimzadehF. Organic Chemistry Research202288994
    [Google Scholar]
  47. (a GaoG. DiJ.Q. ZhangH.Y. MoL.P. ZhangZ.H. J. Catal.2020387394610.1016/j.jcat.2020.04.013
    [Google Scholar]
  48. (b ZhangM. LiuY.H. ShangZ.R. HuH.C. ZhangZ.H. Catal. Commun.201788394410.1016/j.catcom.2016.09.028
    [Google Scholar]
  49. (c GholinejadM. ZarehF. SheibaniH. NájeraC. YusM. J. Mol. Liq.202236712039510.1016/j.molliq.2022.120395
    [Google Scholar]
  50. (d RaiP. GuptaD. Synth. Commun.202151203059308310.1080/00397911.2021.1968910
    [Google Scholar]
  51. (e XuL. ZhangS.Z. LiW. ZhangZ.H. Chemistry202127175483549110.1002/chem.20200513833403733
    [Google Scholar]
  52. (f MolanezhadH. EbrahimzadehF. Chemical Research and Nanomaterials, 1401, 3, 35-40
    [Google Scholar]
  53. (g ChngL.L. ErathodiyilN. YingJ.Y. Acc. Chem. Res.20134681825183710.1021/ar300197s23350747
    [Google Scholar]
  54. (h MajiN. DosanjhH.S. Magnetochemistry20239615610.3390/magnetochemistry9060156
    [Google Scholar]
  55. (a BraccoP. BuschH. von LangermannJ. HanefeldU. Org. Biomol. Chem.201614276375638910.1039/C6OB00934D27282284
    [Google Scholar]
  56. (b EbrahimzadehF. Journal of Physical Chemistry & Eleectrochemistry20164119123
    [Google Scholar]
  57. (c DongF. ChenH. MalapitC.A. PraterM.B. LiM. YuanM. LimK. MinteerS.D. J. Am. Chem. Soc.2020142188374838210.1021/jacs.0c0189032286819
    [Google Scholar]
  58. WennerW. Org. Synth.19524760
    [Google Scholar]
  59. (a NedelkinaS. JupeS.C. BleeK.A. SchalkM. Werck-ReichhartD. BolwellG.P. Plant Mol. Biol.19993961079109010.1023/A:100615621665410380796
    [Google Scholar]
  60. (b KahnR.A. DurstF. Recent Adv. Phytochem.20003415118910.1016/S0079‑9920(00)80007‑6
    [Google Scholar]
/content/journals/loc/10.2174/0115701786307956240522081438
Loading
/content/journals/loc/10.2174/0115701786307956240522081438
Loading

Data & Media loading...

Supplements

The 1H NMR, 13C NMR data, and FTIR spectra of the products have been included in the supporting information. These supplementary materials provide additional details and characterization of the products for reference.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test