Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

In the six-membered heterocyclic compound piperazine, two nitrogen atoms are positioned within the ring at 1 and 4 positions. Numerous studies have shown that piperazine has the potential to be a useful pharmacophore in many harmful pharmacological conditions such as microbiocidal, anti-inflammatory, anticancer, antioxidant, . In this present review, we highlighted the synthetic protocols for piperazine and its analogs, as well as the synthetic protocol for piperazine rearrangement reaction, which have been adopted in recent years. The study also involved a listing of several patents (granted), which comprised important work on piperazine and its derivatives. Among all the methods, the most commonly adopted synthetic methods included the synthesis of piperazine analogs by diza-cope, hydrolytic, mumm, multi-component, ugi-smiles, [2+3]-stevens, aza-Wittig, Curtius, Schmidt rearrangement reactions, . These synthetic protocols have also been compared based on different reaction conditions, feasibility, and economy to help the researchers in designing their work.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786307643240625074530
2024-07-02
2024-12-26
Loading full text...

Full text loading...

References

  1. Ardila-FierroK.J. LukinS. EtterM. UžarevićK. HalaszI. BolmC. HernándezJ.G. Angew. Chem. Int. Ed.20205932134581346210.1002/anie.20191492132187814
    [Google Scholar]
  2. PinkowiczD. PodgajnyR. GawełB. NitekW. ŁasochaW. OszajcaM. CzaplaM. MakarewiczM. BałandaM. SiekluckaB. Angew. Chem. Int. Ed.201150173973397710.1002/anie.20110088021432978
    [Google Scholar]
  3. RoyT. BijuA.T. Chem. Commun.201854212580259410.1039/C7CC09122B29443338
    [Google Scholar]
  4. JungJ.W. KimS.H. SuhY.G. Asian J. Org. Chem.2017691117112910.1002/ajoc.201700202
    [Google Scholar]
  5. MocciR. ColacinoE. LucaL.D. FattuoniC. PorchedduA. DeloguF. ACS Sustain. Chem.& Eng.2021952100211410.1021/acssuschemeng.0c07254
    [Google Scholar]
  6. OngM. ArnoldM. WalzA.W. WahlJ.M. Org. Lett.202224336171617510.1021/acs.orglett.2c0236135977381
    [Google Scholar]
  7. YanD. WangK. BaiS. LiuB. BaiJ. QiX. HuY. J. Am. Chem. Soc.202214494269427610.1021/jacs.2c0088135192348
    [Google Scholar]
  8. BielskiR. GrynkiewiczG. Tetrahedron20218513205810.1016/j.tet.2021.132058
    [Google Scholar]
  9. DuanX. XuH. ShenY. LiuA. HeF. HouH. LiH. XieX. SheX. J. Org. Chem.20238820148421484610.1021/acs.joc.3c0189537800749
    [Google Scholar]
  10. PaceV. Ed.; Homologation Reactions: Reagents, Applications, and Mechanisms.John Wiley & Sons202310.1002/9783527830237
    [Google Scholar]
  11. ChenY. ZhuS. Org. Chem. Front.20229226194619910.1039/D2QO01324J
    [Google Scholar]
  12. St-GelaisJ. DenavitV. GiguèreD. Org. Biomol. Chem.202018203903390710.1039/D0OB00910E32400847
    [Google Scholar]
  13. MalviyaB.K. BottecchiaC. StoneK. LehnherrD. LévesqueF. KappeC.O. CantilloD. Org. Process Res. Dev.202327112183219110.1021/acs.oprd.3c00332
    [Google Scholar]
  14. BhumaN. LebedelL. YamashitaH. ShimizuY. AbadaZ. ArdáA. DésiréJ. MicheletB. Martin-MingotA. Abou-HassanA. TakumiM. MarrotJ. Jiménez-BarberoJ. NagakiA. BlériotY. ThibaudeauS. Angew. Chem. Int. Ed.20216042036204110.1002/anie.20201017533044791
    [Google Scholar]
  15. PaolaE.L. BorumA. PodunavacM. ZakarianA. Org. Lett.202325336167617110.1021/acs.orglett.3c0127637590527
    [Google Scholar]
  16. ZengH. WangL. SuZ. YingM. LinL. FengX. Chem. Sci.20231447139791398510.1039/D3SC05677E38075639
    [Google Scholar]
  17. NilovaA. MannchenM.D. NoelA.N. SemenovaE. GrenningA. J. Chem. Sci.202314102755276210.1039/D2SC07021A36908968
    [Google Scholar]
  18. KishiV. ChahkandiB. ZahediE. AllamehS. J. Mol. Liq.202439612407810.1016/j.molliq.2024.124078
    [Google Scholar]
  19. LiY. XuH. HuangL. ZhouZ. TangZ. MengH. ZhangW. YiW. WuX. Org. Chem. Front.202310123000300910.1039/D3QO00469D
    [Google Scholar]
  20. EsteruelasM.A. OñateE. PazS. Organometallics202342151963197710.1021/acs.organomet.3c00194
    [Google Scholar]
  21. HoogestegerR.H. MurdochN. CordesD.B. JohnstonC.P. Angew. Chem. Int. Ed.20236235e20230804810.1002/anie.20230804837409777
    [Google Scholar]
  22. SongW. GuoJ. StephanD.W. Org. Chem. Front.20231071754175810.1039/D3QO00054K
    [Google Scholar]
  23. ShlyaykherA. TamborninoF. Inorg. Chem.20236230119431195310.1021/acs.inorgchem.3c0134537453070
    [Google Scholar]
  24. SlateE.C.S. BarkerR. EuesdenR.T. RevelsM.R. MeijerA.J.H.M. Mon. Not. R. Astron. Soc.202049745413542010.1093/mnras/staa2436
    [Google Scholar]
  25. YooK. LeeJ. ParkM.H. KimY. KimH.J. KimM. J. Org. Chem.20208596233624110.1021/acs.joc.0c0065932268728
    [Google Scholar]
  26. JalageriM.D. NagarajaA. PuttaiahgowdaY.M. RSC Advances20211125152131523010.1039/D1RA00341K35424074
    [Google Scholar]
  27. ZhangR.H. GuoH.Y. DengH. LiJ. QuanZ.S. J. Enzyme Inhib. Med. Chem.20213611165119710.1080/14756366.2021.193186134080510
    [Google Scholar]
  28. OstrowskaK. Saudi Pharm. J.202028222023210.1016/j.jsps.2019.11.02532042262
    [Google Scholar]
  29. KumarR.R. SahuB. PathaniaS. SinghP.K. AkhtarM.J. KumarB. ChemMedChem202116121878190110.1002/cmdc.20210004533751807
    [Google Scholar]
  30. SanadS.M.H. MekkyA.E.M. Synth. Commun.202050101468148510.1080/00397911.2020.1743318
    [Google Scholar]
  31. SharmaA. WakodeS. FayazF. KhasimbiS. PottooF.H. KaurA. Curr. Pharm. Des.202026354373438510.2174/138161282666620041715481032303168
    [Google Scholar]
  32. ChitikinaS.S. BuddigaP. DebP.K. MailavaramR.P. VenugopalaK.N. NairA.B. Al-JaidiB. KarS. Med. Chem. Res.20202991600161010.1007/s00044‑020‑02586‑5
    [Google Scholar]
  33. RathoreA. AsatiV. KashawS.K. AgarwalS. ParwaniD. BhattacharyaS. MallickC. Mini Rev. Med. Chem.202121336237910.2174/138955752066620091009232732912125
    [Google Scholar]
  34. HuangL. GaoL. ZhangX. YinL. HuJ. SongT. ChenY. Bioorg. Med. Chem. Lett.2020302012750610.1016/j.bmcl.2020.12750632828898
    [Google Scholar]
  35. GeeP. SchepL.J. In: Novel Psychoactive Substances.Academic Press.202230133210.1016/B978‑0‑12‑818788‑3.00009‑7
    [Google Scholar]
  36. ShaquiquzzamanM. VermaG. MarellaA. AkhterM. AkhtarW. KhanM.F. TasneemS. AlamM.M. Eur. J. Med. Chem.201510248752910.1016/j.ejmech.2015.07.02626310894
    [Google Scholar]
  37. AnichinaK. MavrovaA. VuchevD. Popova-DaskalovaG. BassiG. RossiA. MontesiM. PanseriS. FratevF. NaydenovaE. Pharmaceuticals20231611151810.3390/ph1611151838004384
    [Google Scholar]
  38. MazzottaS. Marrugal-LorenzoJ.A. Vega-HolmM. Serna-GallegoA. Álvarez-VidalJ. Berastegui-CabreraJ. Pérez del PalacioJ. DíazC. AielloF. PachónJ. Iglesias-GuerraF. Vega-PérezJ.M. Sánchez-CéspedesJ. Eur. J. Med. Chem.202018511184010.1016/j.ejmech.2019.11184031711794
    [Google Scholar]
  39. Abimbola SalubiC. AbboH.S. JahedN. TitinchiS. Bioorg. Med. Chem.20249911760510.1016/j.bmc.2024.11760538246116
    [Google Scholar]
  40. UddinA. GuptaS. ShoaibR. AnejaB. IrfanI. GuptaK. RawatN. CombrinckJ. KumarB. AleemM. HasanP. JoshiM.C. ChhonkerY.S. ZahidM. HussainA. PandeyK. AlajmiM.F. MurryD.J. EganT.J. SinghS. AbidM. Eur. J. Med. Chem.202426411596910.1016/j.ejmech.2023.11596938039787
    [Google Scholar]
  41. PerekhodaL. GeorgiyantsV. YerominaH. DrapakI. IerominaZ. SychI. SeverinaH. DemchenkoA. Chem. Chem. Technol.2020142214220
    [Google Scholar]
  42. JainA. ChaudharyJ. KhairaH. ChopraB. DhingraA. Drug Res.2021712627210.1055/a‑1323‑281333336346
    [Google Scholar]
  43. BerczyńskiP. KładnaA. Bozdağ DündarO. MuratH.N. SarıE. KrukI. Aboul-EneinH.Y. Bioorg. Chem.20209510351310.1016/j.bioorg.2019.10351331884144
    [Google Scholar]
  44. PalR. Jawaid AkhtarM. RajK. SinghS. SharmaP. KalraS. ChawlaP.A. KumarB. J. Mol. Struct.2022125713258710.1016/j.molstruc.2022.132587
    [Google Scholar]
  45. KalliS.B. VelmuruganV. Pharmacia202269498799310.3897/pharmacia.69.e95096
    [Google Scholar]
  46. Al-GhorbaniM. GoudaM.A. BaashenM. AlharbiO. AlmalkiF.A. RanganathaL.V. Pharm. Chem. J.2022561293710.1007/s11094‑022‑02597‑z
    [Google Scholar]
  47. GiraseP.S. DhawanS. KumarV. ShindeS.R. PalkarM.B. KarpoormathR. Eur. J. Med. Chem.202121011296710.1016/j.ejmech.2020.11296733190957
    [Google Scholar]
  48. LiD. LiB. PengL.X. LiuR. ZengN. Clin. Ther.202042112196221210.1016/j.clinthera.2020.09.01333158581
    [Google Scholar]
  49. SantanaI.G.C. AlmeidaL.S. MoreiraL.K.S. de CarvalhoF.S. MenegattiR. da RochaA.L.B. MazurokT.A. VazB.G. LiãoL.M. BritoA.F. FajemiroyeJ.O. CostaE.A. de CarvalhoP.M.G. Can. J. Physiol. Pharmacol.2022100652153310.1139/cjpp‑2021‑072935395172
    [Google Scholar]
  50. XiaoquanH. E. XinxinJ. YuechaoX. U. GuangjunH. U. CN Patent 115160371-A2022
  51. YanyanL. U. LiyanZ. C.N. Patent 115167083-A2022
  52. JuncaiL. C.N. Patent 114853671-A2022
  53. ZouY. U. LijuanT. XiliangY. TingW. XiaoluC. RenzhangC. C.N. Patent 114805183-A2022
  54. ZhengQ. WangS. FuR. JiX. WangJ. HongfeiG. U. C.N. Patent 217368729-U2022
  55. DongW. MengfeiZ. WangY. WangD. LiT. WangS. HuiyuB. C.N. Patent 114773615-A2022
  56. YongbinC. WeijinZ. ShujieZ. YanjieC. RenK. ZhaoC. ZhangD. I. JingZ. C.N. Patent 114685399-A2022
  57. TaoJ. WuD. YangZ. C.N. Patent 114832653-A2022
  58. LiuZ. JunjiangG. JiaxuanW. AiningZ. YongjunL. C.N. Patent 115105976-A2022
  59. KeliangZ. YuC. Dae-SungK. C.N. Patent 114671830-A2022
  60. XiaoyangY. YintongZ. MingmingX. HongyuH. U. HuangL. I. WangK. E. ZhongningM. A. XiuxiuZ. C.N. Patent 114591174-A2022
  61. ZhenyingZ. YuqiangZ. ZhongD. XiaojunM. A. LaiL. MingguangL. ZhifeiL. U. WenpeiW. YaomanL. I. C.N. Patent 114907568-A2022
  62. XiuqinZ. YanlingH. E. C.N. Patent 114539177-A2022
  63. ZhengzhouQ. JuntengQ. U. YangJ. WenjingW. CuicuiL. C.N. Patent 114053229-A2022
  64. YongboT. PengchengS. PanJ. YixiongD. QiuyangC. HuangH. MingLi C.N. Patent 114315978-A2022
  65. RomanelliM.N. BraconiL. GabelliniA. ManettiD. MarottaG. TeodoriE. Molecules20232916810.3390/molecules2901006838202651
    [Google Scholar]
  66. MeninnoS. LattanziA. J. Org. Chem.202388127888789210.1021/acs.joc.2c0249136808952
    [Google Scholar]
  67. BillacuraM.D.G. LewisR.D. BricklebankN. HamiltonA. WhiteoakC.J. Adv. Synth. Catal.2023365183129313710.1002/adsc.202300537
    [Google Scholar]
  68. HuangJ. XuW. XieH. LiS. J. Org. Chem.201277177506751110.1021/jo301289622849619
    [Google Scholar]
  69. SadalgeP. R. KarnawadiV. Deepti RoyL. D. PrabuM. KrishnamurthyG. GourP. ArlandS. E. KumarJ. J. App. Pharm. Sc.202313405306910.7324/JAPS.2023.58094
    [Google Scholar]
  70. MagriotisP.A. RSC.Medicinal Chemistry202011774575910.1039/D0MD00053A33479672
    [Google Scholar]
  71. OmarA.Z. MosaT.M. El-sadanyS.K. HamedE.A. El-atawyM. J. Mol. Struct.2021124513102010.1016/j.molstruc.2021.13102034248201
    [Google Scholar]
  72. KwakS.H. CochraneC.S. EnnisA.F. LimW.Y. WebsterC.G. ChoJ. FentonB.A. ZhouP. HongJ. Bioorg. Chem.202010210405510.1016/j.bioorg.2020.10405532663666
    [Google Scholar]
  73. KantR. KaurT. HilalZ. AggarwalN. MajiS. J. Phys. Conf. Ser.1531153101210610.1088/1742‑6596/1531/1/012106
    [Google Scholar]
  74. KwonS.H. LeeS.M. ByunS.M. ChinJ. KimB.M. Org. Lett.201214143664366710.1021/ol301506b22769853
    [Google Scholar]
  75. Corredoira-VázquezJ. Oreiro-MartínezP. DeibeA.M.G. Sanmartín-MatalobosJ. FondoM. Chem. Proc.20221213010.3390/ecsoc‑26‑13547
    [Google Scholar]
  76. PertejoP. González-SaizB. QuesadaR. García-ValverdeM. J. Org. Chem.20208521142401424510.1021/acs.joc.0c0210333052681
    [Google Scholar]
  77. El KaïmL. GrimaudL. Reddy PurumandlaS. J. Org. Chem.201176114728473310.1021/jo200397m21486043
    [Google Scholar]
  78. SmithS.C. BentleyP.D. Tetrahedron Lett.200243589990210.1016/S0040‑4039(01)02286‑9
    [Google Scholar]
  79. MajumdarK. RayK. GanaiS. Synlett20102010142122212410.1055/s‑0030‑1258519
    [Google Scholar]
  80. LeiH. YangY. LiC. JiaF. JiangN. GongP. ZhaiX. Org. Process Res. Dev.2020246997100510.1021/acs.oprd.9b00511
    [Google Scholar]
  81. AmerF.A. HammoudaM. El-AhlA.A.S. Abdel-WahabB.F. Synth. Commun.200939341642510.1080/00397910802378373
    [Google Scholar]
  82. GettysK. YeZ. DaiM. Synthesis201749122589260410.1055/s‑0036‑1589491
    [Google Scholar]
  83. OkitsuT. HorikeA. ShimazawaN. WadaA. Org. Biomol. Chem.202018183501351110.1039/D0OB00510J32334423
    [Google Scholar]
  84. Lorentz-PetersenL.L.R. NordstrømL.U. MadsenR. Eur. J. Org. Chem.20122012346752675910.1002/ejoc.201201099
    [Google Scholar]
  85. JamesT. SimpsonI. GrantJ.A. SridharanV. NelsonA. Org. Lett.201315236094609710.1021/ol402988s24219794
    [Google Scholar]
/content/journals/loc/10.2174/0115701786307643240625074530
Loading
/content/journals/loc/10.2174/0115701786307643240625074530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test