Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

Nanocatalysis is the newest invention in the area of synthetic chemistry that has changed the process of chemical transformation. The nanocatalysts have various benefits as compared to traditional catalysts, such as simple and economical methods of synthesis, high surface-to-volume ratio, large number of active sites, excellent selectivity, increased stability, rapid recovery, and recyclability. In recent years, nanomaterials have been extensively employed in the production of heterocyclic moieties. This study intends to emphasize the function of distinct nanocatalysts in the synthesis of various nitrogen-containing heterocyclic compounds. An update on the catalytic efficiency of different nanocatalysts, such as magnetic nanocatalysts, nanomixed metal oxides, core-shell nanocatalysts, nano-supported catalysts, and graphene-based nanocatalysts for the production of heterocycles has been provided in this article.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786307065240527172814
2024-05-31
2024-12-26
Loading full text...

Full text loading...

References

  1. TaylorA.P. RobinsonR.P. FobianY.M. BlakemoreD.C. JonesL.H. FadeyiO. Org. Biomol. Chem.201614286611663710.1039/C6OB00936K27282396
    [Google Scholar]
  2. AlmullaA.F. Al-MullaA.A. Der Pharm. Chem.2017913141147
    [Google Scholar]
  3. P, B.; S, G.; Af, C.; v.G. Int. J. Clin. Pharmacol. Toxicol.20154316917810.19070/2167‑910X‑1500029
    [Google Scholar]
  4. DelostM.D. SmithD.T. AndersonB.J. NjardarsonJ.T. J. Med. Chem.20186124109961102010.1021/acs.jmedchem.8b0087630024747
    [Google Scholar]
  5. SarohaB. KumarG. KumarR. KumariM. KumarS. Chem. Biol. Drug Des.2022100684386910.1111/cbdd.1396634592059
    [Google Scholar]
  6. SinghP.K. SilakariO. ChemMedChem201813111071108710.1002/cmdc.20180011929603634
    [Google Scholar]
  7. KumarG. SarohaB. KumarR. KumariM. KumarS. ChemistrySelect20216205148516510.1002/slct.202100906
    [Google Scholar]
  8. LiG. ChengY. ZhangT. LiY. HanL. LiangG. Drug Des. Devel. Ther.20211593794710.2147/DDDT.S29967833688168
    [Google Scholar]
  9. SinghD. HembromS. RajA. J. Pharmacogn. Phytochem.20198169960710.13140/RG.2.2.18566.04169
    [Google Scholar]
  10. Abdel-AziemA. BaaiuB.S. El-SawyE.R. Polycycl. Aromat. Compd.20224274809481810.1080/10406638.2021.1916543
    [Google Scholar]
  11. GaikwadD.N. GaikwadS.T. ManjulR.K. RajbhojA.S. SuryavanshiD.M. Curr. Org. Chem.202428428629710.2174/0113852728284846240124052127
    [Google Scholar]
  12. GebreS.H. Synth. Commun.2021511113110.1080/00397911.2021.1900257
    [Google Scholar]
  13. JainS. KumarS. LambaB.Y. PatraJ. MahindrooN. Synth. Commun.202151111210.1080/00397911.2020.1817941
    [Google Scholar]
  14. RoyA. BaheA. ChanderiyaA. DangiH. MishraP. MishraA. RatneshD.A.J. Turkish Chem.Soc. Sect. Chem20218385186210.18596/jotcsa.904246
    [Google Scholar]
  15. Nishanth RaoR. JenaS. MukherjeeM. MaitiB. ChandaK. Environ. Chem. Lett.20211943315335810.1007/s10311‑021‑01232‑9
    [Google Scholar]
  16. ShiriP. Appl. Organomet. Chem.2020345e560010.1002/aoc.5600
    [Google Scholar]
  17. ShiriP. AboonajmiJ. Beilstein J. Org. Chem.20201655158610.3762/bjoc.16.5232280385
    [Google Scholar]
  18. MartinsL.M.D.R.S. Catalysts202111221321410.3390/catal11020213
    [Google Scholar]
  19. (a HajizadehZ. RadinekiyanF. Eivazzadeh-keihanR. MalekiA. Sci. Rep.20201011167110.1038/s41598‑020‑68426‑z31913322
    [Google Scholar]
  20. (b ManjulR.K. GaikwadS.T. GadeV.B. RajbhojA.S. JopaleM.K. PatilS.M. GaikwadD.N. SuryavanshiD.M. GoskulwadS.P. ShindeS.D. Lett. Org. Chem.2023201096797510.2174/1570178620666230510122033
    [Google Scholar]
  21. (c ManjulR.K. GadeV.B. GaikwadD.N. SuryavanshiD.M. RajbhojA.S. GaikwadS.T. Lett. Org. Chem.202219645746210.2174/1570178618666210405151600
    [Google Scholar]
  22. (d ChavhanN.M. BhakareS.D. MutheR.C. HandeS.Y. GanduleA.S. GaikwadD.N. SuryawanshiD.M. Lett. Org. Chem.2022191088488910.2174/1570178619666220113114613
    [Google Scholar]
  23. (e GaikwadD.N. GaikwadS.T. ManjulR.K. RajbhojA.S. SuryavanshiD.M. Lett. Org. Chem.202421868769410.2174/0115701786277621231226160450
    [Google Scholar]
  24. Fareghi-AlamdariR. ZekriN. MansouriF. Res. Chem. Intermed.201743116537655110.1007/s11164‑017‑3003‑7
    [Google Scholar]
  25. SreedeviR. SaranyaS. RohitK.R. AnilkumarG. Adv. Synth. Catal.2019361102236224910.1002/adsc.201801471
    [Google Scholar]
  26. IlamanovaM. MastyuginM. SchäferC. KokelA. TörökB. Curr. Org. Chem.202125202304233010.2174/1385272825666210519095808
    [Google Scholar]
  27. SohalH.S. Mater. Today Proc.2022481163117010.1016/j.matpr.2021.08.209
    [Google Scholar]
  28. KumarA. RoutL. AcharyL.S.K. DhakaR.S. DashP. Sci. Rep.2017714297510.1038/srep4297528233832
    [Google Scholar]
  29. SantosA.S. RaydanD. CunhaJ. C Catalysts2021119110810.3390/catal11091108
    [Google Scholar]
  30. JangirN. BagariaS.K. JangidD.K. RSC Advances20221230196401966610.1039/D2RA03122A35865567
    [Google Scholar]
  31. KhanS. SharifiM. HasanA. AttarF. EdisZ. BaiQ. DerakhshankhahH. FalahatiM. J. Adv. Res.20213017118410.1016/j.jare.2020.12.00134026294
    [Google Scholar]
  32. XuQ. SongY. LiY. Liu.Z. Curr. Org. Chem.201620192013202110.2174/1385272820666160215235505
    [Google Scholar]
  33. BikasS. Poursattar MarjaniA. BibakS. Sarreshtehdar AslahehH. Sci. Rep.2023131256410.1038/s41598‑023‑29598‑636781940
    [Google Scholar]
  34. Dharma RaoG.B. NagakalyanS. PrasadG.K. RSC Advances2017763611361610.1039/C6RA26664A
    [Google Scholar]
  35. SinghalS. KhannaP. PandaS.S. KhannaL. J. Heterocycl. Chem.201956102702272910.1002/jhet.3649
    [Google Scholar]
  36. WuY. ZhaoY. WangH. ZhangF. LiR. XiangJ. WangZ. HanB. LiuZ. Green Chem.202022123820382610.1039/D0GC01177K
    [Google Scholar]
  37. VagheiR.G. IzadkhahV. Appl. Organomet. Chem.2017322e402510.1002/aoc.4025
    [Google Scholar]
  38. AroraP. RajputJ.K. J. Mater. Sci.20175219114131142710.1007/s10853‑017‑1304‑2
    [Google Scholar]
  39. Sagar Vijay KumarP. SureshL. VinodkumarT. ReddyB.M. ChandramouliG.V.P. ACS Sustain. Chem.& Eng.2016442376238610.1021/acssuschemeng.6b00056
    [Google Scholar]
  40. EsfandiaryN. NakisaA. AziziK. AzarniaJ. RadfarI. Appl. Organomet. Chem.201631e364110.1002/aoc.3641
    [Google Scholar]
  41. RakhtshahJ. SalehzadehS. GowdiniE. MalekiF. BagheryS. ZolfigolM.A. RSC Adv.2016610610487510488510.1039/C6RA20988B
    [Google Scholar]
  42. NakhaeiA. Russ. J. Gen. Chem.20178781850185610.1134/S1070363217080333
    [Google Scholar]
  43. SafariJ. ZarnegarZ. J. Chem. Sci.2013125483584110.1007/s12039‑013‑0462‑2
    [Google Scholar]
  44. HabibiD. PakravanN. ArabiA. Kaboudvand.Z. Appl. Organomet. Chem.2018321e398810.1002/aoc.3988
    [Google Scholar]
  45. SivakumarP. RameshR. RamanandA. PonnusamyS. MuthamizhchelvanC. Mater. Res. Bull.201146122208221110.1016/j.materresbull.2011.09.009
    [Google Scholar]
  46. MundH.S. TiwariS. SahariyaJ. ItouM. SakuraiY. AhujaB.L. J. Appl. Phys.2011110707391410.1063/1.3650251
    [Google Scholar]
  47. AmiriM. EskandariK. Salavati-NiasariM. Adv. Colloid Interface Sci.201927110198210.1016/j.cis.2019.07.00331325653
    [Google Scholar]
  48. KefeniK.K. MsagatiT.A.M. MambaB.B. Mater. Sci. Eng. B2017215375510.1016/j.mseb.2016.11.002
    [Google Scholar]
  49. BonyasiR. GholinejadM. SaadatiF. NájeraC. New J. Chem.20184243078308610.1039/C7NJ03284F
    [Google Scholar]
  50. SanasiP.D. SanthipriyaD. RameshY. KumarM.R. SwathiB. RaoK.J. J. Chem. Sci.201412661715172010.1007/s12039‑014‑0729‑2
    [Google Scholar]
  51. FernandesM. RBSingh K.Sarkar T.Singh P.Pratap SinghR. Adv. Mater. Lett.202011811010.5185/amlett.2020.081543
    [Google Scholar]
  52. BeyzaeiH. AryanR. MolashahiH. ZahediM.M. Samzadeh-KermaniA. GhasemiB. Moghaddam-ManeshM. J. Indian Chem. Soc.20171451023103110.1007/s13738‑017‑1052‑x
    [Google Scholar]
  53. TaborC. NarayananR. El-SayedM.A. Model Syst. Catal. Single Cryst. to Support. Enzym. Mimics201039541410.1007/978‑0‑387‑98049‑2_18
    [Google Scholar]
  54. ThakkarK.N. MhatreS.S. ParikhR.Y. Nanomedicine20106225726210.1016/j.nano.2009.07.00219616126
    [Google Scholar]
  55. NasrollahzadehM. SajadiS.M. MahamM. J. Mol. Catal. Chem.201539629730310.1016/j.molcata.2014.10.019
    [Google Scholar]
  56. a GouL. HaoL.M. ShiY.X. MaS.L. FanX.Y. XuL. LiD.L. WangK. J. Solid State Chem.2014210112112410.1016/j.jssc.2013.11.014
    [Google Scholar]
  57. b LiZ. LiuJ. HuangZ. YangY. XiaC. LiF. ACS Catal.20133583984510.1021/cs400077r
    [Google Scholar]
  58. Darbandizadeh Mohammad AbadiS.S.A. Karimi ZarchiM.A. AbadiM. AliM. ZarchiK. New J. Chem.20174118103971040610.1039/C7NJ02222K
    [Google Scholar]
  59. ErkenE. SenF. KayaM. J. Nanosci. Nanotechnol.20171781992199910.1166/jnn.2017.12867
    [Google Scholar]
  60. GiridharM. NaikH.S.B. PrabhakarM.C. NaikM.M. BalleshN. MaheshM.C. Bull. Mater. Sci.2021441610.1007/s12034‑020‑02287‑0
    [Google Scholar]
  61. SakthivelP. JayasriT. MadhumithaJ. MahalakshmiS. SubhashiniN. Optik2018154748210.1016/j.ijleo.2017.10.011
    [Google Scholar]
  62. BorhadeA.V. UphadeB.K. J. Indian Chem. Soc.20151261107111310.1007/s13738‑014‑0571‑y
    [Google Scholar]
  63. BanerjeeS. PayraS. SahaA. SeredaG. Tetrahedron Lett.201455405515552010.1016/j.tetlet.2014.07.123
    [Google Scholar]
  64. ZhangJ. LiuJ. PengQ. WangX. LiY. Chem. Mater.200618486787110.1021/cm052256f
    [Google Scholar]
  65. AmadineO. MaatiH. AbdelouhadiK. FihriA. El KazzouliS. LenC. El BouariA. SolhyA. J. Mol. Catal. Chem.201439540941910.1016/j.molcata.2014.08.009
    [Google Scholar]
  66. PanK. MingH. YuH. LiuY. KangZ. ZhangH. LeeS.T. Cryst. Res. Technol.201146111167117410.1002/crat.201100258
    [Google Scholar]
  67. ShihZ.Y. PeriasamyA.P. HsuP.C. ChangH.T. Appl. Catal. B2013132-13336336910.1016/j.apcatb.2012.12.004
    [Google Scholar]
  68. KaurR. PalB. Appl. Catal. A Gen.2015491283610.1016/j.apcata.2014.10.035
    [Google Scholar]
  69. PawarR.C. ChoiD.H. LeeJ.S. LeeC.S. Mater. Chem. Phys.201515116718010.1016/j.matchemphys.2014.11.051
    [Google Scholar]
  70. YinG. NishikawaM. NosakaY. SrinivasanN. AtarashiD. SakaiE. MiyauchiM. ACS Nano2015922111211910.1021/nn507429e25629438
    [Google Scholar]
  71. ZhuY. KongX. LiX. DingG. ZhuY. LiY.W. ACS Catal.20144103612362010.1021/cs5009283
    [Google Scholar]
  72. GonçalvesR.V. WojcieszakR. WenderH. SatoB. Dias, C.; Vono, L.L.; Eberhardt, D.; Teixeira, S.R.; Rossi, L.M.; Rossi, L.M.ACS Appl. Mater. Interfaces20157157987799410.1021/acsami.5b0012925816196
    [Google Scholar]
  73. AlbaladejoM.J. AlonsoF. González-SoriaM.J. ACS Catal.2015563446345610.1021/acscatal.5b00417
    [Google Scholar]
  74. SomorjaiG.A. ParkJ.Y. Angew. Chem. Int. Ed.200847489212922810.1002/anie.20080318119006127
    [Google Scholar]
  75. Ben AissaM.A. TremblayB. Andrieux-LedierA. MaisonhauteE. RaouafiN. CourtyA. Nanoscale2015773189319510.1039/C4NR06893A25615699
    [Google Scholar]
  76. DecanM.R. ImpellizzeriS. MarinM.L. ScaianoJ.C. Nat. Commun.201451461210.1038/ncomms561225109483
    [Google Scholar]
  77. YoshidaK. Gonzalez-ArellanoC. LuqueR. GaiP.L. Appl. Catal. A Gen.20103791-2384410.1016/j.apcata.2010.02.028
    [Google Scholar]
  78. Shaygan NiaA. RanaS. DöhlerD. JirsaF. MeisterA. GuadagnoL. KoslowskiE. BronM. BinderW.H. Chemistry20152130107631077010.1002/chem.20150121726089200
    [Google Scholar]
  79. RanuB.C. SahaA. JanaR. Adv. Synth. Catal.200734917-182690269610.1002/adsc.200700289
    [Google Scholar]
  80. ReymondS. Cossy.J. Chem. Rev.2008108125359540610.1021/cr078346g18942879
    [Google Scholar]
  81. ReddyG.T. KumarG. ReddyN.C.G. Adv. Synth. Catal.20183605995100610.1002/adsc.201701063
    [Google Scholar]
  82. ChetiaM. AliA.A. BordoloiA. SarmaD. J. Chem. Sci.201712981211121710.1007/s12039‑017‑1318‑y
    [Google Scholar]
  83. GoodmanB.A.J. Biores. Bioprod.20205314316210.1016/j.jobab.2020.07.001
    [Google Scholar]
  84. KhanW.A. ArainM.B. SoylakM. Food Chem. Toxicol.202014511170410.1016/j.fct.2020.11170432853698
    [Google Scholar]
  85. NarayanR. NayakU. RaichurA. GargS. Pharmaceutics201810311810.3390/pharmaceutics1003011830082647
    [Google Scholar]
  86. LiouT.H. YangC.C. Mater. Sci. Eng. B2011176752152910.1016/j.mseb.2011.01.007
    [Google Scholar]
  87. WangY. ZhaoQ. HanN. BaiL. LiJ. LiuJ. CheE. HuL. ZhangQ. JiangT. WangS. Nanomedicine201511231332710.1016/j.nano.2014.09.01425461284
    [Google Scholar]
  88. LiZ. BarnesJ.C. BosoyA. StoddartJ.F. ZinkJ.I. Chem. Soc. Rev.20124172590260510.1039/c1cs15246g22216418
    [Google Scholar]
  89. Mohamed IsaE.D. AhmadH. Abdul RahmanM.B. GillM.R. RahmanA. GillM.R. Pharmaceutics202113215210.3390/pharmaceutics1302015233498885
    [Google Scholar]
  90. JeelaniP.G. MulayP. VenkatR. RamalingamC. Silicon20201261337135410.1007/s12633‑019‑00229‑y
    [Google Scholar]
  91. BeraA. ShahS. ShahM. AgarwalJ. VijR.K. Colloids Surf. A Physicochem. Eng. Asp.202059812483310.1016/j.colsurfa.2020.124833
    [Google Scholar]
  92. HadiaN.J. NgY.H. StubbsL.P. TorsæterO. Nanomaterials202111370710.3390/nano1103070733799757
    [Google Scholar]
  93. SadeghiB. MirjaliliB.B.F. HashemiM.M. Tetrahedron Lett.200849162575257710.1016/j.tetlet.2008.02.100
    [Google Scholar]
  94. AfkhamiE. Safaei-GhomiJ. Current.Chem. Lett.20165416517210.5267/j.ccl.2016.7.002
    [Google Scholar]
  95. MirjaliliB.F. BamoniriA. MirhoseiniM.A. Sci. Iran.201320358759110.1016/j.scient.2013.02.008
    [Google Scholar]
  96. AlinezhadH. TajbakhshM. MalekiB. Pourshaban OushibiF. Polycycl. Aromat. Compd.20204051485150010.1080/10406638.2018.1557707
    [Google Scholar]
  97. HaghighiM. NikoofarK. J. Saudi Chem. Soc.201620110110610.1016/j.jscs.2014.09.002
    [Google Scholar]
  98. DesinanS. RoseiR. RoseiF. Chem. Commun.201748648009801110.1039/c2cc33396a
    [Google Scholar]
  99. KangJ. ZhangS. ZhangQ. WangY. Angew. Chem. Int. Ed.200948142565256810.1002/anie.20080571519248073
    [Google Scholar]
  100. GuptaS. GiordanoC. GradzielskiM. MehtaS.K. J. Colloid Interface Sci.201341117318110.1016/j.jcis.2013.08.03024055253
    [Google Scholar]
  101. YangS. BessonM. DescormeC. Appl. Catal. B20151651910.1016/j.apcatb.2014.09.057
    [Google Scholar]
  102. VeerakumarP. RamdassA. RajagopalS. J. Nanosci. Nanotechnol.20131374761478610.1166/jnn.2013.756823901501
    [Google Scholar]
  103. DikhtiarenkoA. KhainakovS.A. de PedroI. BlancoJ.A. GarcíaJ.R. Gimeno.J. Inorg. Chem.20135273933394110.1021/ic302725v23477489
    [Google Scholar]
  104. FidalgoL.M. MaerklS.J. Lab Chip20111191612161910.1039/c0lc00537a21416077
    [Google Scholar]
  105. SahuM. ShaikhM. KhilariS. RanganathK.V.S. Cat. in Green Chem. Eng.20181210511110.1615/.2017021126
    [Google Scholar]
  106. Hemraj-BennyT. TobarN. CarreroN. SumnerR. PimentelL. EmeranG. Mater. Chem. Phys.2018216728110.1016/j.matchemphys.2018.05.081
    [Google Scholar]
  107. GanjiP. Van LeeuwenP.W.N.M. J. Org. Chem.20178231768177410.1021/acs.joc.6b0303228075133
    [Google Scholar]
  108. SaidS. MikhailS. RiadM. Mater. Sci. Energy Technol.20192228829710.1016/j.mset.2019.02.005
    [Google Scholar]
  109. El-BoubbouK. Nanomedicine201813895397110.2217/nnm‑2017‑033629376469
    [Google Scholar]
  110. KambojN. AghayanM. Rubio-MarcosF. NazaretyanK. RodríguezM.A. KharatyanS. HussainovaI. Ceram. Int.20184411122651227210.1016/j.ceramint.2018.04.010
    [Google Scholar]
  111. DubrovskiyA.A. BalaevD.A. ShaykhutdinovK.A. BayukovO.A. PletnevO.N. YakushkinS.S. BukhtiyarovaG.A. MartyanovO.N. J. Appl. Phys.20151182121390110.1063/1.4936838
    [Google Scholar]
  112. ReddyB. VijayakumarV. ArasuM. Al-DhabiN. Molecules20152010192211923510.3390/molecules20101922126506334
    [Google Scholar]
  113. MaldottiA. MolinariA. AmadelliR. Chem. Rev.2002102103811383610.1021/cr010364p12371903
    [Google Scholar]
  114. RichardsR. LiW. DeckerS. DavidsonC. KoperO. ZaikovskiV. VolodinA. RiekerT. KlabundeK.J. J. Am. Chem. Soc.2000122204921492510.1021/ja994383g
    [Google Scholar]
  115. ChoudaryB.M. KantamM.L. RanganathK.V.S. MahendarK. SreedharB. J. Am. Chem. Soc.2004126113396339710.1021/ja038954n15025446
    [Google Scholar]
  116. KantamM.L. LahaS. YadavJ. SreedharB. Tetrahedron Lett.200647356213621610.1016/j.tetlet.2006.06.163
    [Google Scholar]
  117. TailorY.K. KhandelwalS. KumariY. AwasthiK. KumarM. RSC Adv.2015557464154642210.1039/C5RA04863J
    [Google Scholar]
  118. SafaK.D. MousazadehH. Synth. Commun.201646191595160410.1080/00397911.2016.1217339
    [Google Scholar]
  119. KhazaeiA. RanjbaranaA. Moosavi-ZarebA.R. RSC Adv.20153107151072210.1039/b000000x
    [Google Scholar]
  120. KalimuthuK. ChaB.S. KimS. ParkK.S. MicrochemJ. 202015210429610.1016/j.microc.2019.104296
  121. KumarS.S. KumarC.S. MathiyarasuJ. PhaniK.L. Langmuir20072363401340810.1021/la063150h17284059
    [Google Scholar]
  122. MürbeJ. RechtenbachA. Töpfer.J. Mater. Chem. Phys.20081102-342643310.1016/j.matchemphys.2008.02.037
    [Google Scholar]
  123. MorcosS.K. Br. J. Radiol.200780950737610.1259/bjr/1711124317392401
    [Google Scholar]
  124. ErsoyH. RybickiF.J. J. Magn. Reson. Imaging20072651190119710.1002/jmri.2113517969161
    [Google Scholar]
  125. MoradiL. TadayonM. J. Saudi Chem. Soc.2018221667510.1016/j.jscs.2017.07.004
    [Google Scholar]
  126. FardoodT. Iran. J. Chem. Chem. Eng.2019638212910.30492/ijcce.2019.33364
    [Google Scholar]
/content/journals/loc/10.2174/0115701786307065240527172814
Loading
/content/journals/loc/10.2174/0115701786307065240527172814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test