Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1570-1786
  • E-ISSN: 1875-6255

Abstract

4-Hydroxyquinoline-2(1)-ones exhibit multiple biological activities, and studying their synthetic methods is of great significance. In the presence of tetramethylguanidine and silver nitrate, 4-hydroxyquinoline-2(1)-ones were efficiently synthesized from 2-ethynylanilines and carbon dioxide under atmospheric pressure. The reaction conditions, such as types of silver catalysts and reaction solvents, were optimized, and the applicability of the substrate was preliminarily investigated. This method provides an alternative pathway for the synthesis of 4-hydroxyquinoline-2(1)-ones and the conversion and utilization of carbon dioxide.

Loading

Article metrics loading...

/content/journals/loc/10.2174/0115701786302455240603070018
2024-06-21
2025-07-10
Loading full text...

Full text loading...

References

  1. ShangX.F. Morris-NatschkeS.L. LiuY.Q. GuoX. XuX.S. GotoM. LiJ.C. YangG.Z. LeeK.H. Med. Res. Rev.201838377582810.1002/med.2146628902434
    [Google Scholar]
  2. AryaK. AgarwalM. Bioorg. Med. Chem. Lett.2007171869310.1016/j.bmcl.2006.09.08217046250
    [Google Scholar]
  3. de MacedoM.B. KimmelR. UrankarD. GazvodaM. PeixotoA. CoolsF. TorfsE. VerschaeveL. LimaE.S. LyčkaA. MilićevićD. KlásekA. CosP. KafkaS. KošmrljJ. CappoenD. Eur. J. Med. Chem.201713849150010.1016/j.ejmech.2017.06.06128689097
    [Google Scholar]
  4. ChenY.F. LinY.C. Morris-NatschkeS.L. WeiC.F. ShenT.C. LinH.Y. HsuM.H. ChouL.C. ZhaoY. KuoS.C. LeeK.H. HuangL.J. Br. J. Pharmacol.201517251195122110.1111/bph.1299225363404
    [Google Scholar]
  5. ZhangS.L. HuangZ.S. LiY.M. ChanA.S.C. GuL.Q. Tetrahedron200864194403440710.1016/j.tet.2008.02.052
    [Google Scholar]
  6. JampilekJ. MusiolR. PeskoM. KralovaK. VejsovaM. CarrollJ. CoffeyA. FinsterJ. TabakD. NiedbalaH. KozikV. PolanskiJ. CsolleiJ. DohnalJ. Molecules20091431145115910.3390/molecules1403114519305366
    [Google Scholar]
  7. HamamaW.S. HassanienA.E.D.E. ZoorobH.H. Synth. Commun.201444131833185810.1080/00397911.2013.867352
    [Google Scholar]
  8. AtalayS.S. AssadM.Y. AmagataT. WuW. Tetrahedron Lett.2020611615177810.1016/j.tetlet.2020.151778
    [Google Scholar]
  9. TedescoR. ChaiD. DarcyM.G. DhanakD. FitchD.M. GatesA. JohnstonV.K. KeenanR.M. Lin-GoerkeJ. SariskyR.T. ShawA.N. ValkoK.L. WiggallK.J. ZimmermanM.N. DuffyK.J. Bioorg. Med. Chem. Lett.200919154354435810.1016/j.bmcl.2009.05.08019505821
    [Google Scholar]
  10. SekineK. YamadaT. Chem. Soc. Rev.201645164524453210.1039/C5CS00895F26888406
    [Google Scholar]
  11. SongQ.W. ZhouZ.H. HeL.N. Green Chem.201719163707372810.1039/C7GC00199A
    [Google Scholar]
  12. ZhangW. ZhangN. GuoC. LüX. Youji Huaxue20173761309132110.6023/cjoc201701031
    [Google Scholar]
  13. FengJ. ZengS. FengJ. DongH. ZhangX. Chin. J. Chem.2018361096197010.1002/cjoc.201800252
    [Google Scholar]
  14. XiaS.M. ChenK.H. FuH.C. HeL.N. Front Chem.2018646210.3389/fchem.2018.0046230349815
    [Google Scholar]
  15. WangS. XiC. Chem. Soc. Rev.201948138240410.1039/C8CS00281A30480679
    [Google Scholar]
  16. TruongC.C. MishraD.K. J. CO2 Util20204110125210.1016/j.jcou.2020.101252
    [Google Scholar]
  17. ZhouC. LiM. YuJ. SunS. ChengJ. Youji Huaxue20204082221223110.6023/cjoc202003039
    [Google Scholar]
  18. LiaoX. WangZ. TangW. LinJ. Youji Huaxue20234382699271010.6023/cjoc202212026
    [Google Scholar]
  19. IshidaT. KikuchiS. YamadaT. Org. Lett.201315143710371310.1021/ol401571r23819443
    [Google Scholar]
  20. PolitanskayaL. TretyakovE. XiC. J. Fluor. Chem.202124210972010.1016/j.jfluchem.2020.109720
    [Google Scholar]
  21. FengQ. YuanK. ZhuM. YouJ. WangC. Heterocycles202210481486149610.3987/COM‑22‑14682
    [Google Scholar]
  22. ZhaoY. YuB. YangZ. ZhangH. HaoL. GaoX. Liu.Z. Angew. Chem. Int. Ed.201453235922592510.1002/anie.20140052124788820
    [Google Scholar]
  23. LangX.D. YuY.C. LiZ.M. HeL.N. J. CO2 Util20161511512210.1016/j.jcou.2016.03.002
    [Google Scholar]
  24. ShiG. ChenK. WangY. LiH. WangC. ACS Sustain. Chem. Eng.2018655760576510.1021/acssuschemeng.8b01109
    [Google Scholar]
  25. LiuF. PingR. GuY. ZhaoP. LiuB. GaoJ. LiuM. ACS Sustain. Chem.& Eng.2020872910291810.1021/acssuschemeng.9b07242
    [Google Scholar]
  26. FengX. WangG. ZhengT. ZuoC. ZhangX. FyffeP. ChenX. Phys. Chem. Chem. Phys.20212337211302113810.1039/D1CP03747A34528038
    [Google Scholar]
  27. WangZ. LiD. ChenS. HuJ. GongY. GuoY. DengT. New J. Chem.202145104611461610.1039/D0NJ04631K
    [Google Scholar]
  28. LiL.L. JinJ.Y. HuW.Y. HuangJ.Y. FengQ. Heterocycles2023106101711172210.3987/COM‑23‑14892
    [Google Scholar]
/content/journals/loc/10.2174/0115701786302455240603070018
Loading
/content/journals/loc/10.2174/0115701786302455240603070018
Loading

Data & Media loading...

Supplements

Copies of 1H and 13C NMR spectra of compounds and HRMS data for compounds , and are given on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test