- Home
- A-Z Publications
- Letters in Drug Design & Discovery
- Previous Issues
- Volume 21, Issue 11, 2024
Letters in Drug Design & Discovery - Volume 21, Issue 11, 2024
Volume 21, Issue 11, 2024
-
-
Structure-guided Development of Novel Benzothiophene Derivatives as PLK1-PBD Inhibitors
Authors: Daowei Huang, Jing Zhang, Xiaocong Yang, Xiangduan Tan, Tingting Chai, Lindeng Ma, Bingyang Zhao, Ying Chen, Jixia Yang and Yue ZhangBackground: Polo-like kinase 1 (PLK1), a validated target for tumor therapy, plays a key role in mitosis and is over-expressed in many tumors. In addition to its N-terminal kinase domain, PLk1 also harbors a C-terminal polo-box domain (PBD). Objective: A candidate based on PLK1-PBD was developed as a promising compound for future development. Methods: Seventeen small molecule PLK1-PBD inhibitors were designed, synthesized and evaluated for PLK1-PBD inhibitory activities by fluorescence polarization (FP) assay. The compounds with better inhibitory activities were further assessed for their anti-proliferative activities using a CCK-8 method. Results: The inhibitory rates of compounds 7a, 7d, 14a, 14d, 14e and 14f exceeded 98%. The IC50 values of compounds 7d, 14d, 14e, and 14f were 0.73 μM, 0.67 μM, 0.89 μM and 0.26 μM, proving better than MCC1019. Compound 14f showed the best inhibitory activity (IC50: 0.26 μM) and antiproliferative activities against three cancer cell lines (HeLa, HepG2 and MG63). Especially, compound 14f also exhibited acceptable safety profiles in the human ether-a-go-go related gene (hERG) and normal cell tests. The results of docking and prediction studies indicated that compound 14f had a high binding affinity to the target, with good drug-like absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Conclusion: Compound 14f can be a promising compound for future development.
-
-
-
In-silico Study of Secondary Metabolites as Potential Inhibitors of NEF and P24 Protein of HIV-1
More LessIntroduction: Acquired immune deficiency syndrome (HIV/AIDS) has been a major global health concern for over 38 years. No safe and effective preventive or therapeutic vaccine has been developed although many products have been investigated. Methods: This computational study was conducted on plant-based active compounds against HIV-1 NEF and p24 protein to obtain and complexes with high binding scores were used for two-dimensional interaction studies via Ligplot to explore hydrogen bond and hydrophobic bond formation. ADMET analysis for best phytocompounds was performed using DruLito, ALOGPS, and PROTOX II. Results: According to the study conducted, phytocompounds like, Protostrychnine, Isostrychnine, Pseudo- Alpha-Colubrine, Alpha-Colubrine, Camptothecin, Benzo[f]quinoline, and (+) -Camptothecin are safe to be considered as a potential drug candidate after experimental validation against NEF and p24 proteins of HIV-1. While, Picrasidine M, Chaetochromin, 3',3'-Binaringenin, and Sequoiaflavone displayed high binding scores of -10.8, -8.2, -9.5, -9.2 and -9.0, -8.8, -10.6, -9.0 respectively for NEF and p24 protein. All drugs belong to the toxicity class of either 4 or 5. They are inactive for hepatotoxicity and carcinogenicity but active for immunogenicity. Conclusion: For further validation of the results the phytocompounds can be extracted through solvent extraction method and tested on cell lines or animal models for their effectiveness.;
-
Volumes & issues
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)