Skip to content
2000
Volume 21, Issue 14
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

People with type 1 diabetes mellitus (T1DM) are significantly more likely to have osteoporosis (OP). is a Chinese herbal medicine containing various active ingredients, and several clinical trials have been reported to use it to treat OP and T1DM, respectively.

Objective

To evaluate the targets and potential mechanisms of administration on OP and T1DM.

Methods

The targets of were identified using the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. The OP and T1DM datasets were downloaded from the Gene Expression Omnibus (GEO) database. The weighted gene correlation network analysis (WGCNA) method was used to identify the co-expression genes associated with OP and T1DM. In addition, the common gene targets of OP and T1DM were screened using two public databases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the R tool. After the validation of key genes, molecular docking was performed to visualize small molecule-protein interactions.

Results

The compound target network mainly contained 17 compounds and 147 corresponding targets. There were 561 GO items and 154 signaling pathways in KEGG, mainly including the AGE-RAGE signaling pathway in diabetic complications and osteoclast differentiation. The results of molecular docking showed that flavonoids were the top compound of , which had a high affinity with CDK2, VEGFA, and MYC.

Conclusion

Flavonoids in may regulate multiple signaling pathways through MYC, CDK2, and VEGFA, which may play a therapeutic role in OP and T1DM.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230811150017
2024-11-01
2024-11-19
Loading full text...

Full text loading...

References

  1. NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy.JAMA2001285678579510.1001/jama.285.6.785 11176917
    [Google Scholar]
  2. BessetteL. Ste-MarieL.G. JeanS. DavisonK.S. BeaulieuM. BaranciM. BessantJ. BrownJ.P. The care gap in diagnosis and treatment of women with a fragility fracture.Osteoporos. Int.2008191798610.1007/s00198‑007‑0426‑9 17641811
    [Google Scholar]
  3. GebeJ.A. SwansonE. KwokW.W. HLA Class II peptide-binding and autoimmunity.Tissue Antigens2002592788710.1034/j.1399‑0039.2002.590202.x 12028533
    [Google Scholar]
  4. KhanT.S. FraserL.A. Type 1 diabetes and osteoporosis: From molecular pathways to bone phenotype.J. Osteoporos.201520151810.1155/2015/174186 25874154
    [Google Scholar]
  5. JinP. ZhangX. WuY. LiL. YinQ. ZhengL. ZhangH. SunC. Streptozotocin-induced diabetic rat-derived bone marrow mesenchymal stem cells have impaired abilities in proliferation, paracrine, antiapoptosis, and myogenic differentiation.Transplant. Proc.20104272745275210.1016/j.transproceed.2010.05.145 20832580
    [Google Scholar]
  6. StolzingA. SellersD. LlewelynO. ScuttA. Diabetes induced changes in rat mesenchymal stem cells.Cells Tissues Organs2010191645346510.1159/000281826 20130391
    [Google Scholar]
  7. FulzeleK. ClemensT.L. Novel functions for insulin in bone.Bone201250245245610.1016/j.bone.2011.06.018 21723973
    [Google Scholar]
  8. ZieglerA.G. RewersM. SimellO. SimellT. LempainenJ. SteckA. WinklerC. IlonenJ. VeijolaR. KnipM. BonifacioE. EisenbarthG.S. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children.JAMA2013309232473247910.1001/jama.2013.6285 23780460
    [Google Scholar]
  9. AnthamattenA. ParishA. Clinical Update on Osteoporosis.J. Midwifery Womens Health201964326527510.1111/jmwh.12954 30869832
    [Google Scholar]
  10. ChenZ. LiuL. GaoC. ChenW. VongC.T. YaoP. YangY. LiX. TangX. WangS. WangY. Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine.J. Ethnopharmacol.202025811289510.1016/j.jep.2020.112895 32330511
    [Google Scholar]
  11. ChaiY. PuX. WuY. TianX. LiQ. ZengF. WangJ. GaoJ. GongH. ChenY. Inhibitory effect of Astragalus Membranaceus on osteoporosis in SAMP6 mice by regulating vitaminD/FGF23/Klotho signaling pathway.Bioengineered20211214464447410.1080/21655979.2021.1946633 34304712
    [Google Scholar]
  12. KangW. WeiP. OuL. LiM. LiuC. The mechanism study of inhibition effect of prepared Radix Rehmanniainon combined with Radix Astragali osteoporosis through PI3K-AKT signaling pathway.Acta Cir. Bras.20223711e37110110.1590/acb371101 36629528
    [Google Scholar]
  13. YangF. YanG. LiY. HanZ. ZhangL. ChenS. FengC. HuangQ. DingF. YuY. BiC. CaiB. YangL. Astragalus Polysaccharide Attenuated Iron Overload-Induced Dysfunction of Mesenchymal Stem Cells via Suppressing Mitochondrial ROS.Cell. Physiol. Biochem.20163941369137910.1159/000447841 27607448
    [Google Scholar]
  14. BianQ. HuangJ.H. LiangQ.Q. ShuB. HouW. XuH. ZhaoY.J. LuS. ShiQ. WangY.J. The osteogenetic effect of astragaloside IV with centrifugating pressure on the OCT-1 cells.Pharmazie20116616368 21391437
    [Google Scholar]
  15. LiuM. XiaoG.G. RongP. DongJ. ZhangZ. ZhaoH. TengJ. ZhaoH. PanJ. LiY. ZhaQ. ZhangY. JuD. Semen astragali complanati- and rhizoma cibotii-enhanced bone formation in osteoporosis rats.BMC Complement. Altern. Med.201313114110.1186/1472‑6882‑13‑141 23782721
    [Google Scholar]
  16. SellD.R. MonnierV.M. End-stage renal disease and diabetes catalyze the formation of a pentose-derived crosslink from aging human collagen.J. Clin. Invest.199085238038410.1172/JCI114449 2298912
    [Google Scholar]
  17. YuanW. ZhangY. GeY. YanM. KuangR. ZhengX. Astragaloside IV inhibits proliferation and promotes apoptosis in rat vascular smooth muscle cells under high glucose concentration in vitro.Planta Med.200874101259126410.1055/s‑2008‑1081290 18622899
    [Google Scholar]
  18. ZhangD. LiJ. ZhangY. GaoF. DaiR. Astragaloside IV inhibits Angiotensin II-stimulated proliferation of rat vascular smooth muscle cells via the regulation of CDK2 activity.Life Sci.201820010510910.1016/j.lfs.2018.03.036 29567075
    [Google Scholar]
  19. SangZ. ZhouL. FanX. McCrimmonR.J. Radix astragali (huangqi) as a treatment for defective hypoglycemia counterregulation in diabetes.Am. J. Chin. Med.20103861027103810.1142/S0192415X10008445 21061458
    [Google Scholar]
  20. PhuH.T. ThuanD.T.B. NguyenT.H.D. PosadinoA.M. EidA.H. PintusG. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety.Curr. Vasc. Pharmacol.202018436939310.2174/1570161117666190715121939 31418664
    [Google Scholar]
  21. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  22. ZhangH. ZhangY. LiY. WangY. YanS. XuS. DengZ. YangX. XieH. LiJ. Bioinformatics and Network Pharmacology Identify the Therapeutic Role and Potential Mechanism of Melatonin in AD and Rosacea.Front. Immunol.20211275655010.3389/fimmu.2021.756550 34899707
    [Google Scholar]
  23. ZhouW. WuJ. ZhangJ. LiuX. GuoS. JiaS. ZhangX. ZhuY. WangM. Integrated bioinformatics analysis to decipher molecular mechanism of compound Kushen injection for esophageal cancer by combining WGCNA with network pharmacology.Sci. Rep.20201011274510.1038/s41598‑020‑69708‑2 32728182
    [Google Scholar]
  24. XiaQ.D. XunY. LuJ.L. LuY.C. YangY.Y. ZhouP. HuJ. LiC. WangS.G. Network pharmacology and molecular docking analyses on Lianhua Qingwen capsule indicate Akt1 is a potential target to treat and prevent COVID‐19.Cell Prolif.20205312e1294910.1111/cpr.12949 33140889
    [Google Scholar]
  25. PinziL. RastelliG. Molecular Docking: Shifting Paradigms in Drug Discovery.Int. J. Mol. Sci.20192018433110.3390/ijms20184331 31487867
    [Google Scholar]
  26. FerreiraL. dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  27. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  28. XuX. ZhangW. HuangC. LiY. YuH. WangY. DuanJ. LingY. A novel chemometric method for the prediction of human oral bioavailability.Int. J. Mol. Sci.20121366964698210.3390/ijms13066964 22837674
    [Google Scholar]
  29. ChenM.L. ShahV. PatnaikR. AdamsW. HussainA. ConnerD. MehtaM. MalinowskiH. LazorJ. HuangS.M. HareD. LeskoL. SpornD. WilliamsR. Bioavailability and bioequivalence: An FDA regulatory overview.Pharm. Res.200118121645165010.1023/A:1013319408893 11785681
    [Google Scholar]
  30. TaoW. XuX. WangX. LiB. WangY. LiY. YangL. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease.J. Ethnopharmacol.2013145111010.1016/j.jep.2012.09.051 23142198
    [Google Scholar]
  31. NingK. ZhaoX. PoetschA. ChenW.H. YangJ. Computational Molecular Networks and Network Pharmacology.BioMed Res. Int.20172017110.1155/2017/7573904 29250548
    [Google Scholar]
  32. ZhangM. YuanY. ZhouW. QinY. XuK. MenJ. LinM. Network pharmacology analysis of Chaihu Lizhong Tang treating non-alcoholic fatty liver disease.Comput. Biol. Chem.20208610724810.1016/j.compbiolchem.2020.107248 32208163
    [Google Scholar]
  33. LindquistO. BengtssonC. HanssonT. RoosB. Effect of age and menopause on osteoporosis.Scand. J. Soc. Med. Suppl.1977148084 299008
    [Google Scholar]
  34. GallagherJ.C. Effect of early menopause on bone mineral density and fractures.Menopause200714356757110.1097/gme.0b013e31804c793d 17476146
    [Google Scholar]
  35. LangfelderP. HorvathS. WGCNA: An R package for weighted correlation network analysis.BMC Bioinformatics20089155910.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  36. MiaoX. LuoQ. ZhaoH. QinX. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries.Sci. Rep.2016613939810.1038/srep39398 27982099
    [Google Scholar]
  37. RobinX. TurckN. HainardA. TibertiN. LisacekF. SanchezJ.C. MüllerM. pROC: An open-source package for R and S+ to analyze and compare ROC curves.BMC Bioinformatics20111217710.1186/1471‑2105‑12‑77 21414208
    [Google Scholar]
  38. ParvezM.S.A. KarimM.A. HasanM. JamanJ. KarimZ. TahsinT. HasanM.N. HosenM.J. Prediction of potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2 using comprehensive drug repurposing and molecular docking approach.Int. J. Biol. Macromol.20201631787179710.1016/j.ijbiomac.2020.09.098 32950529
    [Google Scholar]
  39. WeiX. WuX. ChengZ. WuQ. CaoC. XuX. ShangH. Botanical drugs: A new strategy for structure-based target prediction.Brief. Bioinform.2022231bbab42510.1093/bib/bbab425 34698349
    [Google Scholar]
  40. HallD.C.Jr JiH.F. A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease.Travel Med. Infect. Dis.20203510164610.1016/j.tmaid.2020.101646 32294562
    [Google Scholar]
  41. SongW. NiS. FuY. WangY. Uncovering the mechanism of Maxing Ganshi Decoction on asthma from a systematic perspective: A network pharmacology study.Sci. Rep.2018811736210.1038/s41598‑018‑35791‑9 30478434
    [Google Scholar]
  42. JohnstonC.B. DagarM. Osteoporosis in Older Adults.Med. Clin. North Am.2020104587388410.1016/j.mcna.2020.06.004 32773051
    [Google Scholar]
  43. BoschitschE.P. DurchschlagE. DimaiH.P. Age-related prevalence of osteoporosis and fragility fractures: Real-world data from an Austrian Menopause and Osteoporosis Clinic.Climacteric201720215716310.1080/13697137.2017.1282452 28286986
    [Google Scholar]
  44. MisraS. ShuklaA.K. Teplizumab: Type 1 diabetes mellitus preventable?Eur. J. Clin. Pharmacol.202379560961610.1007/s00228‑023‑03474‑8 37004543
    [Google Scholar]
  45. ShobackD. RosenC.J. BlackD.M. CheungA.M. MuradM.H. EastellR. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Guideline Update.J. Clin. Endocrinol. Metab.2020105358759410.1210/clinem/dgaa048 32068863
    [Google Scholar]
  46. CazarolliL. ZanattaL. AlbertonE. Bonorino FigueiredoM.S. FoladorP. DamazioR. PizzolattiM. Barreto SilvaF.R. Flavonoids: Prospective drug candidates.Mini Rev. Med. Chem.20088131429144010.2174/138955708786369564 18991758
    [Google Scholar]
  47. Landis-PiwowarK. DouQ. Polyphenols: Biological activities, molecular targets, and the effect of methylation.Curr. Mol. Pharmacol.20081323324310.2174/1874467210801030233 20021436
    [Google Scholar]
  48. RahimiR. GhiasiS. AzimiH. FakhariS. AbdollahiM. A review of the herbal phosphodiesterase inhibitors; Future perspective of new drugs.Cytokine201049212312910.1016/j.cyto.2009.11.005 20005737
    [Google Scholar]
  49. HarperJ.W. AdamsP.D. Cyclin-Dependent Kinases.Chem. Rev.200110182511252610.1021/cr0001030 11749386
    [Google Scholar]
  50. LimS. KaldisP. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation.Development2013140153079309310.1242/dev.091744 23861057
    [Google Scholar]
  51. PezzottiG. AdachiT. BoschettoF. ZhuW. ZanoccoM. MarinE. BalB.S. McEntireB.J. Off-Stoichiometric Reactions at the Cell–Substrate Biomolecular Interface of Biomaterials: In Situ and Ex Situ Monitoring of Cell Proliferation, Differentiation, and Bone Tissue Formation.Int. J. Mol. Sci.20192017408010.3390/ijms20174080 31438530
    [Google Scholar]
  52. MillsC. M1 and M2 Macrophages: Oracles of Health and Disease.Crit. Rev. Immunol.201232646348810.1615/CritRevImmunol.v32.i6.10 23428224
    [Google Scholar]
  53. FeiQ. GuoC. XuX. GaoJ. ZhangJ. ChenT. CuiD. Osteogenic growth peptide enhances the proliferation of bone marrow mesenchymal stem cells from osteoprotegerin-deficient mice by CDK2/cyclin A.Acta Biochim. Biophys. Sin. (Shanghai)2010421180180610.1093/abbs/gmq086 20926513
    [Google Scholar]
  54. GongZ. DaW. TianY. ZhaoR. QiuS. WuQ. WenK. ShenL. ZhouR. TaoL. ZhuY. Exogenous melatonin prevents type 1 diabetes mellitus–induced bone loss, probably by inhibiting senescence.Osteoporos. Int.202233245346610.1007/s00198‑021‑06061‑8 34519833
    [Google Scholar]
  55. ColeM.D. The myc oncogene: Its role in transformation and differentiation.Annu. Rev. Genet.198620136138410.1146/annurev.ge.20.120186.002045 3028245
    [Google Scholar]
  56. DangC.V. MYC on the path to cancer.Cell20121491223510.1016/j.cell.2012.03.003 22464321
    [Google Scholar]
  57. PrendergastG.C. Mechanisms of apoptosis by c-Myc.Oncogene199918192967298710.1038/sj.onc.1202727 10378693
    [Google Scholar]
  58. BaeS. LeeM.J. MunS.H. GiannopoulouE.G. Yong-GonzalezV. CrossJ.R. MurataK. GiguèreV. van der MeulenM. Park-MinK.H. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERRα.J. Clin. Invest.201712772555256810.1172/JCI89935 28530645
    [Google Scholar]
  59. GranlundL. HedinA. WahlhütterM. SeironP. KorsgrenO. SkogO. LundbergM. Histological and transcriptional characterization of the pancreatic acinar tissue in type 1 diabetes.BMJ Open Diabetes Res. Care202191e00207610.1136/bmjdrc‑2020‑002076 34031141
    [Google Scholar]
  60. FerraraN. HenzelW.J. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells.Biochem. Biophys. Res. Commun.1989161285185810.1016/0006‑291X(89)92678‑8 2735925
    [Google Scholar]
  61. SengerD.R. GalliS.J. DvorakA.M. PerruzziC.A. HarveyV.S. DvorakH.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Science1983219458798398510.1126/science.6823562 6823562
    [Google Scholar]
  62. PlouëtJ. SchillingJ. GospodarowiczD. Isolation and characterization of a newly identified endothelial cell mitogen produced by AtT-20 cells.EMBO J.19898123801380610.1002/j.1460‑2075.1989.tb08557.x 2684646
    [Google Scholar]
  63. KimK.J. LiB. WinerJ. ArmaniniM. GillettN. PhillipsH.S. FerraraN. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.Nature1993362642384184410.1038/362841a0 7683111
    [Google Scholar]
  64. IshizukaT. HinataT. WatanabeY. Superoxide induced by a high-glucose concentration attenuates production of angiogenic growth factors in hypoxic mouse mesenchymal stem cells.J. Endocrinol.2011208214715910.1677/JOE‑10‑0305 21068072
    [Google Scholar]
  65. PengJ. HuiK. HaoC. PengZ. GaoQ.X. JinQ. LeiG. MinJ. QiZ. BoC. DongQ.N. BingZ.H. JiaX.Y. FuD.L. Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice.Connect. Tissue Res.201657427728910.3109/03008207.2016.1171858 27028715
    [Google Scholar]
  66. WanC. GilbertS.R. WangY. CaoX.M. ShenX. RamaswamyG. JacobsenK.A. AlaqlZ.S. GerstenfeldL.C. EinhornT.A. EberhardtA.W. DengL. GuldbergR.E. ClemensT.L. Role of hypoxia inducible factor-1 alpha pathway in bone regeneration.J. Musculoskelet. Neuronal Interact.200884323324 19147958
    [Google Scholar]
  67. WangY. WanC. DengL. LiuX. CaoX. GilbertS.R. BouxseinM.L. FaugereM.C. GuldbergR.E. GerstenfeldL.C. HaaseV.H. JohnsonR.S. SchipaniE. ClemensT.L. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development.J. Clin. Invest.200711761616162610.1172/JCI31581 17549257
    [Google Scholar]
  68. LiuY. BerendsenA.D. JiaS. LotinunS. BaronR. FerraraN. OlsenB.R. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation.J. Clin. Invest.201212293101311310.1172/JCI61209 22886301
    [Google Scholar]
  69. MontagnaniA. GonnelliS. Antidiabetic therapy effects on bone metabolism and fracture risk.Diabetes Obes. Metab.201315978479110.1111/dom.12077 23368527
    [Google Scholar]
  70. Barneze CostaS.M. da Silva FeltranG. NambaV. SilvaT.M. Shetty HallurR.L. SaraivaP.P. ZambuzziW.F. NogueiraC.R. Infraphysiological 17β-estradiol (E2) concentration compromises osteoblast differentiation through Src stimulation of cell proliferation and ECM remodeling stimulus.Mol. Cell. Endocrinol.202051811102710.1016/j.mce.2020.111027 32911016
    [Google Scholar]
  71. HuangX. LiS. LuW. XiongL. Metformin activates Wnt/β-catenin for the treatment of diabetic osteoporosis.BMC Endocr. Disord.202222118910.1186/s12902‑022‑01103‑6 35869471
    [Google Scholar]
  72. YuT. YouX. ZhouH. HeW. LiZ. LiB. XiaJ. ZhuH. ZhaoY. YuG. XiongY. YangY. MiR-16-5p regulates postmenopausal osteoporosis by directly targeting VEGFA.Aging (Albany NY)202012109500951410.18632/aging.103223 32427128
    [Google Scholar]
  73. NiknamZ. SamadiM. GhalibafsabbaghiA. Chodari, IGF-I combined with exercise improve diabetes-induced vascular dysfunction in heart of male Wistar rats.J. Cardiovasc. Thorac. Res.2021141344110.34172/jcvtr.2021.54 35620752
    [Google Scholar]
  74. LaiP.K.K. ChanJ.Y.W. KwokH.F. ChengL. YuH. LauC.P. LeungP.C. FungK.P. LauC.B.S. Induction of Angiogenesis in Zebrafish Embryos and Proliferation of Endothelial Cells by an Active Fraction Isolated from the Root of Astragalus membranaceus using Bioassay-guided Fractionation.J. Tradit. Complement. Med.20144423924510.4103/2225‑4110.139109 25379465
    [Google Scholar]
  75. TseH.Y.G. HuiM.N.Y. LiL. LeeS.M.Y. LeungA.Y.H. ChengS.H. Angiogenic efficacy of simplified 2-herb formula (NF3) in zebrafish embryos in vivo and rat aortic ring in vitro.J. Ethnopharmacol.2012139244745310.1016/j.jep.2011.11.031 22138660
    [Google Scholar]
  76. SheikpranbabuS. HaribalaganeshR. LeeK. GurunathanS. Pigment epithelium-derived factor inhibits advanced glycation end products-induced retinal vascular permeability.Biochimie20109281040105110.1016/j.biochi.2010.05.004 20470857
    [Google Scholar]
  77. CaoY. XuL. YangX. DongY. LuoH. XingF. GeQ. The potential role of cycloastragenol in promoting diabetic wound repair in vitro.BioMed Res. Int.2019201911010.1155/2019/7023950 31930133
    [Google Scholar]
  78. BehlT. KotwaniA. Chinese herbal drugs for the treatment of diabetic retinopathy.J. Pharm. Pharmacol.201769322323510.1111/jphp.12683 28124440
    [Google Scholar]
  79. KimD.Y. KangM.K. LeeE.J. KimY.H. OhH. KangY.H. Eucalyptol Inhibits Advanced Glycation End Products-Induced Disruption of Podocyte Slit Junctions by Suppressing Rage-Erk-C-Myc Signaling Pathway.Mol. Nutr. Food Res.20186219180030210.1002/mnfr.201800302 29987888
    [Google Scholar]
  80. ZhengJ. WuM. WangH. LiS. WangX. LiY. WangD. LiS. Network Pharmacology to Unveil the Biological Basis of Health-Strengthening Herbal Medicine in Cancer Treatment.Cancers (Basel)2018101146110.3390/cancers10110461 30469422
    [Google Scholar]
  81. CasagrandeF. DarbonJ.M. Effects of structurally related flavonoids on cell cycle progression of human melanoma cells: Regulation of cyclin-dependent kinases CDK2 and CDK111 Abbreviations: CDK, cyclin-dependent kinase; CKI, CDK inhibitor; PI 3-kinase, phosphatidylinositol 3-kinase; PKC, protein kinase C; DTT, dithiothreitol; RIPA, radioimmunoprecipitation assay buffer.Biochem. Pharmacol.200161101205121510.1016/S0006‑2952(01)00583‑4 11322924
    [Google Scholar]
  82. RainaR. AfrozeN. Kedhari SundaramM. HaqueS. BajboujK. HamadM. HussainA. Chrysin inhibits propagation of HeLa cells by attenuating cell survival and inducing apoptotic pathways.Eur. Rev. Med. Pharmacol. Sci.202125522062220 33755959
    [Google Scholar]
/content/journals/lddd/10.2174/1570180820666230811150017
Loading
/content/journals/lddd/10.2174/1570180820666230811150017
Loading

Data & Media loading...

Supplements

Additional file 1: Table . Basic information on some active components of . Additional file 2: Table . These potential common target genes 147 for treatment of osteoporosis and type 1 diabetes mellitus. Additional file 3: Table . The top 35 hub genes of the common genes for treatment of osteoporosis and type 1 diabetes mellitus. Additional file 4: Fig. (). Weighted gene co-expression network analysis of osteoporosis and type 1 diabetes mellitus. () Results after the OP clustering. () Results after the T1DM clustering. () Module correlations in OP. () Module correlations in T1DM. Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test