Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction: Sudden SARS-CoV-2 pandemic disrupted global public health; hence, searching for more effective treatments is urgently needed. Objective: Recently, a new host protein LRRC15 has been identified, facilitating viral attachment and cellular invasion and hence can be a good target against SARS-CoV-2. In this study, design some potential inhibitors against LRRC15. Methods: Here, we explored three strategies to find potential inhibitors against LRRC15, including the repurposing of ACE2 inhibitors, structure-based de novo drug generation, and virtual screening of three chemical libraries (ZINC Trial, ZINC Fragments, and Enamine HTSC). Results: Based on binding affinity Benazepril (-7.7 kcal/mol) was chosen as a final repurpose drug candidate, and ten drugs (-8.9 to -8.0 kcal/mol) and 100 virtually screened drugs (-11.5 to -10.7 kcal/mol) were elected for further ADMET and drug likeliness investigation. After filtering, Z131403838 and Z295568380 were chosen as final drug candidates, and de novo drugs were further optimized. Optimization, re-docking, and pharmacokinetic analysis confirmed L-2 and L-36 as the best hit de novo drug candidates. Furthermore, all five final drugs demonstrated stable receptor-drug complex stability in molecular dynamics simulation. Conclusion: Effective treatment options are necessary to combat the SARS-CoV-2 epidemics. All the compounds presented in this study appeared to be promising inhibitorpromising inhibitors against LRRC15, though the future clinical investigation is needed toensure the biological effectiveness.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180820666230223120829
2024-07-01
2025-01-23
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/1570180820666230223120829
Loading

  • Article Type:
    Research Article
Keyword(s): ACE2; ADMET analysis; LRRC15; molecular docking; molecular dynamics simulation; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test