Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Introduction: The world is currently facing a pandemic initiated by the new coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus. Viral transcription and replication are the fundamental processes of any virus. They allow the synthesis of genetic material and the consequent multiplication of the virus to infect other cells or organisms. Methods: The most important protein in SARS-CoV-2 is the RNA polymerase (RdRp or nsp12), responsible for both processes. The structure of this protein (PDB ID: 6M71) was used as a target in the application of computational strategies for a drug search, like virtual screening and molecular docking. Here, the Pathogen Box database of chemical compounds was used together with Remdesivir, Beclabuvir, and Sofosbuvir drugs as potential inhibitors of nsp12. Results: The results showed Top10 potential target inhibitors with binding energy (ΔG) higher than those of the positive controls, of which TCMDC-134153 and TCMDC-135052, both with ΔG = −7.53 kcal/mol, present interactions with three important residues of the nsp12 catalytic site. Conclusion: These proposed ligands would be used for subsequent validation by molecular dynamics, where they can be considered as drugs for the development of effective treatments against this new pandemic.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180819666220622085659
2023-07-01
2025-03-17
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/1570180819666220622085659
Loading

  • Article Type:
    Research Article
Keyword(s): drug repurposing; molecular docking; nsp12; pandemic; RNA polymerase; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test