Skip to content
2000
Volume 16, Issue 6
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background: Large-scale energy landscape characterization of protein-protein interactions (PPIs) is important to understand the interaction mechanism and protein-protein docking methods. The experimental methods for detecting energy landscapes are tedious and the existing computational methods require longer simulation time. Objective: The objective of the present work is to ascertain the energy profiles at the interface regions in a rapid manner to analyze the energy landscape of protein-protein interactions. Methods: The atomic coordinates obtained from the X-ray and NMR spectroscopy data are considered as inputs to compute cumulative energy profiles for experimentally validated protein-protein complexes. The energies computed by the program were comparable to the standard molecular dynamics simulations. Results: The PPI Profiler not only enables rapid generation of energy profiles but also facilitates the detection of hot spot residue atoms involved therein. Conclusion: The hotspot residues and their computed energies matched with the experimentally determined hot spot residues and their energies which correlated well by employing the MM/GBSA method. The proposed method can be employed to scan entire proteomes across species at an atomic level to study the key PPI interactions.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180815666180815151141
2019-06-01
2025-06-23
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/1570180815666180815151141
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test