Skip to content
2000
Volume 11, Issue 10
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Trismus-pseudocamptodactyly (TPS) syndrome is a musculoskeletal disorder, caused by mutation in the perinatal MyH8 gene, leading to the incomplete opening of mouth and camptodactyly of fingers upon dorsiflexion of the wrist. MyH8 gene is relevant for muscle regulation, and it plays a significant role in muscle motor function, the hydrolysis of ATP, that is essential for the production of force for muscle movement. To understand the structural basis of TPS, we utilize a large number of software packages to estimate how the Arg674Gln mutation would affect the structure and stability of MyH8 gene product. The motor domain of MYH8 was modeled in order to know what are the interactions altered in the mutant protein. Further, we docked the ATP in the nucleotide binding region of both wild type and Arg674Gln mutant to understand the mechanism of action. Our strategy may be helpful for understanding the mechanism of regulation of muscle movements and the role of Arg674Gln mutation in TPS.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180811666140717190217
2014-12-01
2025-03-10
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/1570180811666140717190217
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test