Skip to content
2000
Volume 2, Issue 5
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

The binding of the indirubin analogue indirubin-3'-aminooxy-acetate (E243) to glycogen phosphorylase (GP) has been studied by kinetic and crystallographic experiments. E243 was shown to be a competitive inhibitor of GPb with respect to both Glc-1-P and AMP (Ki values of 21 ± 7 μM and 16 ± 3 μM, respectively). The crystal structure of the GPb-E243 complex determined at 1.9 Å resolution showed one ligand molecule bound at the inhibitor site, mainly by intercalating between the two aromatic side chains of Phe285 and Tyr613. In addition, two E243 molecules, Mol 1 and Mol 2, were bound at the allosteric activator AMP binding site and a new sub-site in the vicinity of the allosteric site, respectively, with their indole-aminooxyacetate rings inclined approximately 40°. The binding mode of E243 to GPb inhibitor and allosteric site is different from those of flavopiridol, AMP, Glc-6-P, W1807, and a potent phenoxy-phthalate compound, previously described, illustrating how the enzyme can accommodate a number of diverse chemical entities.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/1570180054405839
2005-08-01
2025-05-22
Loading full text...

Full text loading...

/content/journals/lddd/10.2174/1570180054405839
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test