Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Transdermal drug administration has become increasingly popular in pharmaceutical research due to its potential to enhance drug bioavailability, patient compliance, and therapeutic effectiveness. Transdermal administration of proteins and peptides has proven to be a viable method for enhancing the therapeutic efficacy and patient adherence to biologic medications. Administering proteins and peptides through the gastrointestinal route exposes them to stomach acid and enzymes, causing denaturation and resulting in poor bioavailability. Moreover, to address these issues, various research groups are focusing on transdermal delivery systems as an alternative route of administration. Therefore, in this article, we tried to cover the recent developments in formulation strategies, transdermal delivery systems, and regulatory issues for protein and peptide medicines. The main approaches for peptide administration, including nanoparticle carriers, biophysical enhancement techniques, and microneedle-based devices, have been discussed to overcome the difficulties of delivering macromolecular medications through the skin barrier. Furthermore, we analyse the regulatory environment that oversees the creation and authorization of transdermal peptide and protein delivery systems, highlighting the significance of quality control, safety, and efficacy, while also focusing on clinical advancements and recent research findings. This review attempts to offer insights delivery of peptides and proteins. This study focuses on transdermal methods, summarizing recent advancements in protein and peptide drug delivery. The transdermal route is favored over oral administration due to its numerous advantages, including non-invasiveness, high patient compliance, and avoidance of the first-pass effect. Consequently, it highlights the development of an efficient carrier system that demonstrates these benefits effectively.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808357267250102054810
2025-01-10
2025-06-18
Loading full text...

Full text loading...

References

  1. KalluriH. BangaA.K. Transdermal delivery of proteins.AAPS PharmSciTech201112143144110.1208/s12249‑011‑9601‑6 21369712
    [Google Scholar]
  2. Al HanbaliO.A. KhanH.M.S. SarfrazM. ArafatM. IjazS. HameedA. Transdermal patches: Design and current approaches to painless drug delivery.Acta Pharm.201969219721510.2478/acph‑2019‑0016 31259729
    [Google Scholar]
  3. LongL-y. ZhangJ. YangZ. GuoY. HuX. WangY. Transdermal delivery of peptide and protein drugs: Strategies, advantages and disadvantages.J. Drug Deliv. Sci. Technol.20206010200710.1016/j.jddst.2020.102007
    [Google Scholar]
  4. PastoreM.N. KaliaY.N. HorstmannM. RobertsM.S. Transdermal patches: History, development and pharmacology.Br. J. Pharmacol.201517292179220910.1111/bph.13059 25560046
    [Google Scholar]
  5. NasrollahiS.A. TaghibiglouC. AziziE. FarboudE.S. Cell-penetrating peptides as a novel transdermal drug delivery system.Chem. Biol. Drug Des.201280563964610.1111/cbdd.12008 22846609
    [Google Scholar]
  6. BangaA.K. Theme section: Transdermal delivery of proteins.Pharm. Res.20072471357135910.1007/s11095‑007‑9323‑3 17492493
    [Google Scholar]
  7. DhimanS. Gurjeet SinghT. Kumar RehniA. Transdermal patches: A recent approch to new drug delivery system.Int. J. Pharm. Pharm. Sci.201132634
    [Google Scholar]
  8. CretichM. DaminF. PirriG. ChiariM. Protein and peptide arrays: Recent trends and new directions.Biomol. Eng.2006232-3778810.1016/j.bioeng.2006.02.001 16527536
    [Google Scholar]
  9. YuY.Q. YangX. WuX.F. FanY. Bin. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications.Front. Bioeng. Biotechnol.20219March117
    [Google Scholar]
  10. TapfumaneyiP. ImranM. MohammedY. RobertsM.S. Recent advances and future prospective of topical and transdermal delivery systems.Frontiers in Drug Delivery20222September95773210.3389/fddev.2022.957732
    [Google Scholar]
  11. LiuT. ChenM. FuJ. SunY. LuC. QuanG. PanX. WuC. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs.Acta Pharm. Sin. B20211182326234310.1016/j.apsb.2021.03.003 34522590
    [Google Scholar]
  12. UpadhyayG. VermaS. ParvezN. Kumar SharmaP. Recent trends in transdermal drug delivery system -a review.Adv. Biol. Res.201483131138Available from: https://pdfs.semanticscholar.
    [Google Scholar]
  13. AlkilaniA. McCruddenM.T. DonnellyR. Transdermal drug delivery: Innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum.Pharmaceutics20157443847010.3390/pharmaceutics7040438 26506371
    [Google Scholar]
  14. KrugJ. Kinetic pattern formation at solid surfaces.In: Collective Dynamics of Nonlinear and Disordered Systems. RadonsG. JustW. HäusslerP. Berlin, HeidelbergSpringer200510.1007/3‑540‑26869‑3_2
    [Google Scholar]
  15. DragicevicN. MaibachH.I. Percutaneous penetration enhancers chemical methods in penetration enhancement: Drug manipulation strategies and vehicle effects.Percutaneous Penetration Enhanc. Chem. Methods Penetration Enhanc. Drug Manip. Strateg. Veh. Eff.2015January134110.1007/978‑3‑662‑45013‑0
    [Google Scholar]
  16. WaltersK.A. RobertsM.S. The structure and function of skin. Dermato.Transdermal Formul.20021140
    [Google Scholar]
  17. OnoS. EgawaG. KabashimaK. Regulation of blood vascular permeability in the skin.Inflamm. Regen.20173711110.1186/s41232‑017‑0042‑9 29259710
    [Google Scholar]
  18. DixitN. BaliV. BabootaS. AhujaA. AliJ. Iontophoresis - an approach for controlled drug delivery: A review.Curr. Drug Deliv.200741110 17269912
    [Google Scholar]
  19. JadoulA. BouwstraJ. Effects of iontophoresis and electroporation on the stratum corneum: Review of the biophysical studies.Anne Jadoul.199935189105
    [Google Scholar]
  20. McCruddenM.T.C. SinghT.R.R. MigalskaK. DonnellyR.F. Strategies for enhanced peptide and protein delivery.Ther. Deliv.20134559361410.4155/tde.13.31 23647277
    [Google Scholar]
  21. SrinivasL. ManikantaV. JaswithaM. Protein and peptide drug delivery - A brief review.Res. J. Pharm. Technol.20191231369138210.5958/0974‑360X.2019.00230.0
    [Google Scholar]
  22. BangaA.K. BoseS. GhoshT.K. Iontophoresis and electroporation: Comparisons and contrasts.Int. J. Pharm.1999179111910.1016/S0378‑5173(98)00360‑3 10053197
    [Google Scholar]
  23. AsfourM.H. Advanced trends in protein and peptide drug delivery: A special emphasis on aquasomes and microneedles techniques.Drug Deliv. Transl. Res.202111112310.1007/s13346‑020‑00746‑z 32337668
    [Google Scholar]
  24. ParhiR. MandruA. Enhancement of skin permeability with thermal ablation techniques: Concept to commercial products.Drug Deliv. Transl. Res.202111381784110.1007/s13346‑020‑00823‑3 32696221
    [Google Scholar]
  25. DenetA.R. VanbeverR. PréatV. Skin electroporation for transdermal and topical delivery.Adv. Drug Deliv. Rev.200456565967410.1016/j.addr.2003.10.027 15019751
    [Google Scholar]
  26. SubhraT. WangP.C. GangF. Electroporation based drug delivery and its applications. In: Adv Micro/Nano Electromechanical Syst Fabr Technol.InTech201310.5772/55369
    [Google Scholar]
  27. GehlJ. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research.Acta Physiol. Scand.2003177443744710.1046/j.1365‑201X.2003.01093.x 12648161
    [Google Scholar]
  28. UedaH. MutohM. SekiT. KobayashiD. MorimotoY. Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery.Biol. Pharm. Bull.200932591692010.1248/bpb.32.916 19420764
    [Google Scholar]
  29. MiaoY.Y. WangZ.L. ZhangP.Y. New approach of transdermal drug delivery: Sonophoresis. DEStech Transactions on Computer Science and Engineering201910.12783/dtcse/ccme2018/28619
    [Google Scholar]
  30. SeahB.C.Q. TeoB.M. Recent advances in ultrasound-based transdermal drug delivery.Int. J. Nanomedicine2018137749776310.2147/IJN.S174759 30538456
    [Google Scholar]
  31. MarwahH. GargT. GoyalA.K. RathG. Permeation enhancer strategies in transdermal drug delivery.Drug Deliv.201623256457810.3109/10717544.2014.935532 25006687
    [Google Scholar]
  32. HmingthansangaV. SinghN. BanerjeeS. ManickamS. VelayuthamR. NatesanS. Improved topical drug delivery: Role of permeation enhancers and advanced approaches.Pharmaceutics20221412281810.3390/pharmaceutics14122818 36559311
    [Google Scholar]
  33. SharmaS. KulkarniJ. PawarA.P. Permeation enhancers in the transmucosal delivery of macromolecules.Pharmazie2006616495504 16826967
    [Google Scholar]
  34. OliyaiR. StellaV.J. Prodrugs of peptides and proteins for improved formulation and delivery.Annu. Rev. Pharmacol. Toxicol.199333152154410.1146/annurev.pa.33.040193.002513 8494350
    [Google Scholar]
  35. WangY. CheethamA.G. AngacianG. SuH. XieL. CuiH. Peptide–drug conjugates as effective prodrug strategies for targeted delivery.Adv. Drug Deliv. Rev.2017110-11111212610.1016/j.addr.2016.06.015 27370248
    [Google Scholar]
  36. DaughertyA. MrsnyR.J. Proteins And Peptides Pharmacokinetic Pharmacodynamic And Metabolic Outcomes.1st edIndiaCRC Press Inc.2009
    [Google Scholar]
  37. CensiR. Di MartinoP. VermondenT. HenninkW.E. Hydrogels for protein delivery in tissue engineering.J. Control. Release2012161268069210.1016/j.jconrel.2012.03.002 22421425
    [Google Scholar]
  38. GuptaH. SharmaA. Recent trends in protein and peptide drug delivery systems.Asian J. Pharm.200932697510.4103/0973‑8398.55041
    [Google Scholar]
  39. NiuZ. Conejos-sanchezI. GriffinB.T. DriscollC.M.O. AlonsoM.J. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016106Pt B33735410.1016/j.addr.2016.04.00127080735
    [Google Scholar]
  40. ZustiakS.P. WeiY. LeachJ.B. Protein – hydrogel interactions in tissue engineering.Mechan. Appl.2013192160171
    [Google Scholar]
  41. del ValleL.J. DíazA. PuiggalíJ. Hydrogels for biomedical applications: Cellulose, chitosan, and protein/peptide derivatives.Gels20173327
    [Google Scholar]
  42. MaG. WuC. Microneedle, bio-microneedle and bio-inspired microneedle : A review.J. Control. Release2017251112310.1016/j.jconrel.2017.02.011 28215667
    [Google Scholar]
  43. HalderJ. GuptaS. KumariR. Das GuptaG. RaiV.K. Microneedle array: Applications, recent advances, and clinical pertinence in transdermal drug delivery.J. Pharm. Innov.202116355856510.1007/s12247‑020‑09460‑2 32837607
    [Google Scholar]
  44. JamaledinR. Di NataleC. OnestoV. TaraghdariZ.B. ZareE.N. MakvandiP. VecchioneR. NettiP.A. Progress in microneedle-mediated protein delivery.J. Clin. Med.20209254210.3390/jcm9020542 32079212
    [Google Scholar]
  45. DasguptaA. MondalJ.H. DasD. Peptide hydrogels.RSC Advances2013391179149
    [Google Scholar]
  46. BhatnagarS. GadeelaP.R. ThathireddyP. VenugantiV.V.K. Microneedle-based drug delivery: Materials of construction.J. Chem. Sci.201913199010.1007/s12039‑019‑1666‑x
    [Google Scholar]
  47. Nazary AbrbekohF. SalimiL. SaghatiS. AminiH. Fathi KarkanS. MoharamzadehK. SokulluE. RahbarghaziR. Application of microneedle patches for drug delivery; doorstep to novel therapies.J. Tissue Eng.2022132041731422108539010.1177/20417314221085390 35516591
    [Google Scholar]
  48. ManojV.R. ManojH. Review on transdermal microneedle-based drug delivery.Asian J. Pharm. Clin. Res.20191211810.22159/ajpcr.2019.v12i1.27434
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808357267250102054810
Loading
/content/journals/lddd/10.2174/0115701808357267250102054810
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test