Skip to content
2000
Volume 21, Issue 18
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Objective

Phosphodiesterase-5 (PDE5) is an enzyme that promotes the degradation of cGMP in the blood, leading to a restriction in regulating blood flow in the penis, thereby reducing cGMP causing difficulties for men in achieving hardness (erectile dysfunction). Natural products with fewer side effects are being developed in many different treatment strategies and are necessary today. The current study aims to evaluate this enzyme's inhibitory potential and marine xanthones through computational models.

Methods

The database of marine xanthones was collected from previously published literature. Protein structures were downloaded from the RCSB protein data bank (PDB ID: 1UDT). Molecular docking studies were performed using the AutoDock Vina v1.2.3 program to conduct screening. Molecular dynamics simulations were carried out with the GROMACS program to assess structural stability, and gmx_MMPBSA was used to make free-binding energy calculations for each PDE5 protein complex with potential compounds. Furthermore, Density Functional Theory (DFT) was applied in this study to calculate the atomic properties of the molecules based on quantum mechanics using the Gaussian 09 program.

Results

Molecular docking revealed that 21 compounds (staprexanthone A (69), emerixanthone E (89), emerixanthone A (90), emerixanthone C (91), varixanthone (92), aspergixanthone H (95), austocystin L (98), austocystin M (99), emerixanthone D (109), 15-acetyl tajixanthone hydrate (117), tajixanthone hydrate (118), 16-chlorotajixanthone (119), citreamicin ε A (131), citreamicin ε B (132), engyodontochone A (146), citreamicin θ B (151), citreaglycon A (152), dehydrocitreaglycon A (153), neocitreamicin I (159), citreamicin α (161), ukixanthomycin A (165) had superior binding affinities (ΔG < -11 kcal/mol) compared to the control inhibitor. Molecular dynamics confirmed the stability of the protein-ligand complexes. MM/GBSA analysis showed nine compounds (91, 98, 109, 118, 119, 151, 159, 161, 131) had binding energies comparable to or better than sildenafil. Quantum mechanical estimates indicated their potential as electron donors and acceptors, highlighting their antagonistic potential.

Conclusion

These promising marine xanthones warrant further research to assess their PDE5 inhibitory activity and . This could provide valuable insights for developing new natural resource-based drugs to prevent or treat erectile dysfunction.

Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808356442241221183358
2025-01-02
2025-06-20
Loading full text...

Full text loading...

References

  1. SinV.J.E. AnandG.S. KohH.L. Botanical medicine and natural products used for erectile dysfunction.Sex. Med. Rev.20219456859210.1016/j.sxmr.2020.10.00533277212
    [Google Scholar]
  2. LawranceK. ByersS. Sexual satisfaction in long‐term heterosexual relationships: The interpersonal exchange model of sexual satisfaction.Pers. Relatsh.19952426728510.1111/j.1475‑6811.1995.tb00092.x
    [Google Scholar]
  3. El-SakkaA.I. ShamloulR. YassinA.A. Erectile dysfunction, cardiovascular diseases and depression: interaction of therapy.Expert Opin. Pharmacother.200910132107211710.1517/1465656090308932619566480
    [Google Scholar]
  4. MalavigeL.S. LevyJ.C. Erectile dysfunction in diabetes mellitus.J. Sex. Med.2009651232124710.1111/j.1743‑6109.2008.01168.x19210706
    [Google Scholar]
  5. FabbriA. AversaA. IsidoriA. Erectile dysfunction: an overview.Hum. Reprod. Update19973545546610.1093/humupd/3.5.4559528911
    [Google Scholar]
  6. Aytaç,; Mckinlay, J.B.; Krane, R.J. The likely worldwide increase in erectile dysfunction between 1995 and 2025 and some possible policy consequences.BJU Int.1999841505610.1046/j.1464‑410x.1999.00142.x10444124
    [Google Scholar]
  7. LugnierC. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents.Pharmacol. Ther.2006109336639810.1016/j.pharmthera.2005.07.00316102838
    [Google Scholar]
  8. ChenY. WangH. WangW. WangD. SkaggsK. ZhangH.T. Phosphodiesterase 7(PDE7): A unique drug target for central nervous system diseases.Neuropharmacology202119610869410.1016/j.neuropharm.2021.10869434245775
    [Google Scholar]
  9. ZhangC. XueZ.H. LuoW.H. JiangM.Y. WuY. The therapeutic potential of phosphodiesterase 9 (PDE9) inhibitors: a patent review (2018-present).Expert Opin. Ther. Pat.202434975977210.1080/13543776.2024.237663238979973
    [Google Scholar]
  10. CorbinJ.D. Mechanisms of action of PDE5 inhibition in erectile dysfunction.Int. J. Impot. Res.200416S1S4S710.1038/sj.ijir.390120515224127
    [Google Scholar]
  11. DorseyP. KeelC. KlavensM. HellstromW.J.G. Phosphodiesterase type 5 (PDE5) inhibitors for the treatment of erectile dysfunction.Expert Opin. Pharmacother.20101171109112210.1517/1465656100369813120402554
    [Google Scholar]
  12. KhalidM. AlqarniM.H. WahabS. AnnaduraiS. AlamriM.A. FoudahA.I. AljarbaT.M. AkhtarJ. Badruddeen; Ahmad, S. Ameliorative sexual behavior and phosphodiesterase-5 inhibitory effects of Spondias mangifera fruit extract in rodents: In silico, in vitro, and in vivo study.J. Clin. Med.20221113373210.3390/jcm1113373235807028
    [Google Scholar]
  13. SabphonC. TemkitthawonP. IngkaninanK. SawasdeeP. Phosphodiesterase inhibitory activity of the flavonoids and xanthones from Anaxagorea luzonensis.Nat. Prod. Commun. 201510210.1177/1934578X150100022225920267
    [Google Scholar]
  14. RibaudoG. VendrameT. BovaS. Isoflavones from Maclura pomifera: structural elucidation and in silico evaluation of their interaction with PDE5.Nat. Prod. Res.201731171988199410.1080/14786419.2016.126910128025893
    [Google Scholar]
  15. OngaroA. ZagottoG. MemoM. GianoncelliA. RibaudoG. Natural phosphodiesterase 5 (PDE5) inhibitors: a computational approach.Nat. Prod. Res.202135101648165310.1080/14786419.2019.161972631140295
    [Google Scholar]
  16. SoaresJ.X. LoureiroD.R.P. DiasA.L. ReisS. PintoM.M.M. AfonsoC.M.M. Bioactive marine xanthones: A review.Mar. Drugs20222015810.3390/md2001005835049913
    [Google Scholar]
  17. NaY. Recent cancer drug development with xanthone structures.J. Pharm. Pharmacol.200961670771210.1211/jpp.61.06.000219505360
    [Google Scholar]
  18. FengZ. LuX. GanL. ZhangQ. LinL. Xanthones, a promising anti-inflammatory scaffold: Structure, activity, and drug likeness analysis.Molecules202025359810.3390/molecules2503059832019180
    [Google Scholar]
  19. LoureiroD.R.P. SoaresJ.X. CostaJ.C. MagalhãesÁ.F. AzevedoC.M.G. PintoM.M.M. AfonsoC.M.M. Structures, activities and drug-likeness of anti-infective xanthone derivatives isolated from the marine environment: A review.Molecules201924224310.3390/molecules2402024330634698
    [Google Scholar]
  20. KangH.H. ZhangH.B. ZhongM.J. MaL.Y. LiuD.S. LiuW.Z. RenH. Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae.Mar. Drugs2018161144910.3390/md1611044930445748
    [Google Scholar]
  21. FrischM.J. Gaussian 09.Wallingford, CTGaussian, Inc.2009
    [Google Scholar]
  22. SungB.J. Yeon HwangK. Ho JeonY. LeeJ.I. HeoY.S. Hwan KimJ. MoonJ. Min YoonJ. HyunY.L. KimE. Jin EumS. ParkS.Y. LeeJ.O. Gyu LeeT. RoS. Myung ChoJ. Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules.Nature200342569539810210.1038/nature0191412955149
    [Google Scholar]
  23. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  24. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  25. Lindorff-LarsenK. PianaS. PalmoK. MaragakisP. KlepeisJ.L. DrorR.O. ShawD.E. Improved side‐chain torsion potentials for the Amber ff99SB protein force field.Proteins20107881950195810.1002/prot.2271120408171
    [Google Scholar]
  26. BussiG. DonadioD. ParrinelloM. Canonical sampling through velocity rescaling.J. Chem. Phys.2007126101410110.1063/1.240842017212484
    [Google Scholar]
  27. BernettiM. BussiG. Pressure control using stochastic cell rescaling.J. Chem. Phys.20201531111410710.1063/5.002051432962386
    [Google Scholar]
  28. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. gmxMMPBSA: A new tool to perform end-state free energy calculations with GROMACS.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c0064534586825
    [Google Scholar]
  29. WangE. SunH. WangJ. WangZ. LiuH. ZhangJ.Z.H. HouT. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design.Chem. Rev.2019119169478950810.1021/acs.chemrev.9b0005531244000
    [Google Scholar]
  30. KoopmansT. About the assignment of wave functions and eigenvalues to the individual electrons of an atom.Physica193411-610411310.1016/S0031‑8914(34)90011‑2
    [Google Scholar]
  31. FanJ. FuA. ZhangL. Progress in molecular docking.Quant. Biol.201972838910.1007/s40484‑019‑0172‑y
    [Google Scholar]
  32. BellE.W. ZhangY. DockRMSD: an open-source tool for atom mapping and RMSD calculation of symmetric molecules through graph isomorphism.J. Cheminform.20191114010.1186/s13321‑019‑0362‑731175455
    [Google Scholar]
  33. WilliamsM.A. LadburyJ.E. Hydrogen Bonds in Protein-Ligand Complexes.In: Protein-Ligand Interactions.Wiley200310.1002/3527601813.ch6
    [Google Scholar]
  34. Pires de OliveiraI. LescanoC.H. De NucciG. Q817G mutation in phosphodiesterase type 5: Conformational analysis and dissociation profile of the inhibitor Tadalafil.Chem. Biol. Drug Des.201993441942910.1111/cbdd.1342630381900
    [Google Scholar]
  35. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: a webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky31829718510
    [Google Scholar]
  36. ChaudharyM.K. SrivastavaA. SinghK.K. TandonP. JoshiB.D. Computational evaluation on molecular stability, reactivity, and drug potential of frovatriptan from DFT and molecular docking approach.Comput. Theor. Chem.2020119111303110.1016/j.comptc.2020.113031
    [Google Scholar]
  37. BalogunT.A. IpinlojuN. AbdullateefS.A. OlapadeI. In silico study on the potentials of adrenalone and its analogues as inhibitors of phosphodiesterase-5 for the treatment of erectile dysfunction.Afr. J. Pharm. Pharmacol.20191378190
    [Google Scholar]
  38. YoungT. The computation of binding free energies for drug design.Protein–Ligand Interact.2012326394
    [Google Scholar]
  39. BardM. Sterol mutants of Saccharomyces cerevisiae: chromatographic analyses.Lipids1977128645654331007
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808356442241221183358
Loading
/content/journals/lddd/10.2174/0115701808356442241221183358
Loading

Data & Media loading...

Supplements

Supplementary material has the chemical structures of 169 marine xanthones (Fig. ); The active site gorge of the PDE5 protein (Fig. ); 2D interaction views of the 23 potential xanthones (ΔGestimated < -11 kcal/mol) interact with amino acid residues in the binding pocket of the PDE5 protein (Fig. ); RMSD of protein backbone in complexes with 21 potential xanthones compared to apo-protein and reference (Fig. ); RMSD of ligand in complexes with 21 potential xanthones compared to apo-protein and reference (Fig. ); Binding free energy of 23 potential compounds against PDE5 protein (Fig. ); HOMO and LUMO maps of quantum chemical calculation of 21 potential xanthones (Fig. ); MEP maps of quantum chemical calculation of hit compounds (Fig. ); Binding affinity of 169 studied xanthones with the PDE5 protein (Table ); Binding affinity and Amino acid residue interactions of the hit compounds from marine xanthones database against PDE5 (Table ); ADMET profiles of top 21 potential compounds (Table ). Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test