Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1570-1808
  • E-ISSN: 1875-628X

Abstract

Background

Intervertebral Disc Degeneration (IDD) is a major cause of lower back pain. Ginsenoside compound C (GCC) has shown potential in treating IDD, but its specific targets and mechanisms remain unclear.

Objective

This study aimed to investigate the potential molecular mechanisms of GCC in the treatment of IDD using network pharmacology and molecular docking approaches.

Methods

Public databases were utilized to identify 100 targets related to GCC and 20,757 targets associated with IDD, of which 96 common targets were determined through cross-analysis. A Protein-Protein Interaction (PPI) network was constructed using the STRING database, and key gene clusters were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to explore the biological processes and pathways involved. Molecular docking was conducted to verify the binding of GCC to key proteins.

Results

Six key genes, including HSP90AA1, CASP3, MAPK1, EGFR, HIF1A, and PIK3CA, were identified as central to the PPI network. GO analysis suggested that GCC's targets are involved in intracellular processes, while KEGG analysis highlighted the IL-17 and TNF signaling pathways. Molecular docking confirmed stable binding between GCC and key proteins, with binding energies ranging from -3.58 to -2.01 Kcal/mol.

Conclusion

GCC may inhibit the IL-17 and TNF signaling pathways by interacting with key proteins, potentially contributing to the treatment of IDD.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/lddd/10.2174/0115701808354770241231055915
2025-01-08
2025-06-20
The full text of this item is not currently available.

References

  1. BuckwalterJ.A. Aging and degeneration of the human intervertebral disc.Spine199520111307131410.1097/00007632‑199506000‑00022 7660243
    [Google Scholar]
  2. LeonardiM. SimonettiL. AgatiR. Neuroradiology of spine degenerative diseases.Best Pract. Res. Clin. Rheumatol.2002161598710.1053/berh.2001.0207 11987932
    [Google Scholar]
  3. WangS.Z. RuiY.F. LuJ. WangC. Cell and molecular biology of intervertebral disc degeneration: Current understanding and implications for potential therapeutic strategies.Cell Prolif.201447538139010.1111/cpr.12121 25112472
    [Google Scholar]
  4. TeraguchiM. YoshimuraN. HashizumeH. MurakiS. YamadaH. MinamideA. OkaH. IshimotoY. NagataK. KagotaniR. TakiguchiN. AkuneT. KawaguchiH. NakamuraK. YoshidaM. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study.Osteoarthritis Cartilage201422110411010.1016/j.joca.2013.10.019 24239943
    [Google Scholar]
  5. BoswellM.V. ShahR.V. EverettC.R. SehgalN. McKenzie BrownA.M. AbdiS. BowmanR.C.II DeerT.R. DattaS. ColsonJ.D. SpillaneW.F. SmithH.S. LucasL.F. BurtonA.W. ChopraP. StaatsP.S. WassermanR.A. ManchikantiL. Interventional techniques in the management of chronic spinal pain: Evidence-based practice guidelines.Pain Physician20051814710.36076/ppj.2006/9/1 16850041
    [Google Scholar]
  6. BlanquerS.B.G. GrijpmaD.W. PootA.A. Delivery systems for the treatment of degenerated intervertebral discs.Adv. Drug Deliv. Rev.20158417218710.1016/j.addr.2014.10.024 25451138
    [Google Scholar]
  7. JonesR. RubinG. BerenbaumF. ScheimanJ. Gastrointestinal and cardiovascular risks of nonsteroidal anti-inflammatory drugs.Am. J. Med.2008121646447410.1016/j.amjmed.2008.01.045 18501223
    [Google Scholar]
  8. ZhangQ.Y. WangF.X. JiaK.K. KongL.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects.Front. Pharmacol.20189125310.3389/fphar.2018.01253 30459615
    [Google Scholar]
  9. YuL. HaoY. PengC. ZhangP. ZhuJ. CaiY. ZhuG. Effect of Ginsenoside Rg1 on the intervertebral disc degeneration rats and the degenerative pulposus cells and its mechanism.Biomed. Pharmacother.202012310973810.1016/j.biopha.2019.109738 31951975
    [Google Scholar]
  10. ShenH. GaoX.J. LiT. JingW.H. HanB.L. JiaY.M. HuN. YanZ.X. LiS.L. YanR. Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism.J. Ethnopharmacol.2018216475610.1016/j.jep.2018.01.021 29366768
    [Google Scholar]
  11. SharmaA. LeeH.J. Ginsenoside compound K: Insights into recent studies on pharmacokinetics and health-promoting activities.Biomolecules2020107102810.3390/biom10071028 32664389
    [Google Scholar]
  12. ZhangS. WangT. WangX. WangY. WangP. LiJ. WangZ. LinF. Protective effects of ginsenoside Rh1 on intervertebral disc degeneration through inhibition of nuclear factor kappa-B signaling pathway.Pharmacogn. Mag.20211773
    [Google Scholar]
  13. WazaM. AdachiH. KatsunoM. MinamiyamaM. TanakaF. DoyuM. SobueG. Modulation of Hsp90 function in neurodegenerative disorders: A molecular-targeted therapy against disease-causing protein.J. Mol. Med. (Berl.)200684863564610.1007/s00109‑006‑0066‑0 16741751
    [Google Scholar]
  14. KennedyS.G. WagnerA.J. ConzenS.D. JordánJ. BellacosaA. TsichlisP.N. HayN. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal.Genes Dev.199711670171310.1101/gad.11.6.701 9087425
    [Google Scholar]
  15. DonnellyA. BlaggB. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket.Curr. Med. Chem.200815262702271710.2174/092986708786242895 18991631
    [Google Scholar]
  16. WhitesellL. LindquistS.L. HSP90 and the chaperoning of cancer.Nat. Rev. Cancer200551076177210.1038/nrc1716 16175177
    [Google Scholar]
  17. WuertzK. VoN. KletsasD. BoosN. Inflammatory and catabolic signalling in intervertebral discs: The roles of NF-κB and MAP Kinases.Eur. Cell. Mater.20122310212010.22203/eCM.v023a08 22354461
    [Google Scholar]
  18. OuyangZ. WangW. YanY. WangB. LvG. The PI3K/Akt pathway: A critical player in intervertebral disc degeneration.Oncotarget2017834578705788110.18632/oncotarget.18628 28915718
    [Google Scholar]
  19. SaklatvalaJ. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease.Curr. Opin. Pharmacol.20044437237710.1016/j.coph.2004.03.009 15251131
    [Google Scholar]
  20. PorterA.G. JänickeR.U. Emerging roles of caspase-3 in apoptosis.Cell Death Differ.1999629910410.1038/sj.cdd.4400476 10200555
    [Google Scholar]
  21. XiaC. ZengZ. FangB. TaoM. GuC. ZhengL. WangY. ShiY. FangC. MeiS. ChenQ. ZhaoJ. LinX. FanS. JinY. ChenP. Mesenchymal stem cell-derived exosomes ameliorate intervertebral disc degeneration via anti-oxidant and anti-inflammatory effects.Free Radic. Biol. Med.201914311510.1016/j.freeradbiomed.2019.07.026 31351174
    [Google Scholar]
/content/journals/lddd/10.2174/0115701808354770241231055915
Loading
/content/journals/lddd/10.2174/0115701808354770241231055915
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test